Abstract
We report the estimation of jet transport coefficient \(\hat{q}\) for quark- and gluon-initiated jets using a simple quasiparticle model in the absence and presence of magnetic field. This model introduces a temperature and magnetic field-dependent degeneracy factor of partons, which is tuned by fitting the entropy density of lattice quantum chromodynamics data. At a finite magnetic field, \(\hat{q}\) for quark jets splits into parallel and perpendicular components whose magnetic field dependence comes from two sources: the field-dependent degeneracy factor and the phase-space part guided by the shear viscosity-to-entropy density ratio. Due to the electrically neutral nature of gluons, the estimation of \(\hat{q}\) for gluon jets is affected only by the field-dependent degeneracy factor. In the presence of a finite magnetic field, we find a significant enhancement in \(\hat{q}\) for both quark- and gluon-initiated jets at low temperature, which gradually decreases towards high temperature. We compare the obtained results with the earlier calculations based on the anti-de Sitter/conformal field theory correspondence, and a qualitatively similar trend is observed. The change in \(\hat{q}\) in the presence of magnetic field is, however, quantitatively different for quark- and gluon-initiated jets. This is an interesting observation which can be explored experimentally to verify the effect of magnetic field on \(\hat{q}\).
Similar content being viewed by others
References
M Connors, C Nattrass, R Reed and S Salur, Rev. Mod. Phys. 90, 025005 (2018)
I Y Aref’eva, Teor. Mat. Fiz. 184, 398 (2015)
R Chatterjee and D K Srivastava, Nucl. Phys. A 830, 503C (2009)
M Gyulassy and M Plumer, Phys. Lett. B 243, 432 (1990)
X N Wang and M Gyulassy, Phys. Rev. Lett. 68, 1480 (1992)
A Majumder and M Van Leeuwen, Prog. Part. Nucl. Phys. 66, 41 (2011)
JET: K M Burke et al, Phys. Rev. C 90, 014909 (2014)
NA49: A Laszlo, Indian J. Phys. 85, 787 (2011)
PHENIX: A Adare et al, Phys. Rev. C 82, 011902 (2010)
CMS: S Chatrchyan et al, Eur. Phys. J. C 72, 1945 (2012)
ATLAS: M Aaboud et al, Phys. Lett. B 790, 108 (2019)
ATLAS: G Aad et al, Phys. Rev. C 107, 054908 (2023)
ALICE: B Abelev et al, JHEP 03, 013 (2014)
R Baier, Y L Dokshitzer, A H Mueller, S Peigne and D Schiff, Nucl. Phys. B 484, 265 (1997)
B G Zakharov, JETP Lett. 65, 615 (1997)
X Feal, C A Salgado and R A Vazquez, Phys. Lett. B 816, 136251 (2021)
X F Chen, C Greiner, E Wang, X N Wang and Z Xu, Phys. Rev. C 81, 064908 (2010)
X F Chen, T Hirano, E Wang, X N Wang and H Zhang, Phys. Rev. C 84, 034902 (2011)
G Y Qin, J Ruppert, C Gale, S Jeon, G D Moore and M G Mustafa, Phys. Rev. Lett. 100, 072301 (2008)
B Schenke, C Gale and S Jeon, Phys. Rev. C 80, 054913 (2009)
Z Q Liu, H Zhang, B W Zhang and E Wang, Eur. Phys. J. C 76, 20 (2016)
C Andrés, N Armesto, M Luzum, C A Salgado and P Zurita, Eur. Phys. J. C 76, 475 (2016)
M Xie, S Y Wei, G Y Qin and H Z Zhang, Eur. Phys. J. C 79, 589 (2019)
M Xie, X N Wang and H Z Zhang, Phys. Rev. C 103, 034911 (2021)
Q F Han, M Xie and H Z Zhang, Eur. Phys. J. Plus 137, 1056 (2022)
M Gyulassy, P Levai and I Vitev, Nucl. Phys. B 594, 371 (2001)
I Vitev and M Gyulassy, Phys. Rev. Lett. 89, 252301 (2002)
A Buzzatti and M Gyulassy, Phys. Rev. Lett. 108, 022301 (2012)
A Majumder, Phys. Rev. D 85, 014023 (2012)
X f Guo and X N Wang, Phys. Rev. Lett. 85, 3591 (2000). https://inspirehep.net/literature/546886
X N Wang and X f Guo, Nucl. Phys. A 696, 788 (2001). https://inspirehep.net/literature/553250
K C Zapp, F Krauss and U A Wiedemann, JHEP 03, 080 (2013)
K C Zapp, Eur. Phys. J. C 74, 2762 (2014)
J G Milhano and K Zapp, Eur. Phys. J. C 82, 1010 (2022)
ALICE: S Acharya et al, Phys. Rev. C 101, 034911 (2020)
PHENIX: A Adare et al, Phys. Rev. Lett. 101, 232301 (2008)
PHENIX: A Adare et al, Phys. Rev. C 87, 034911 (2013)
ALICE: B Abelev et al, Phys. Lett. B 720, 52 (2013)
CMS: S Chatrchyan et al, Eur. Phys. J. C 72, 1945 (2012)
STAR: B I Abelev et al, Phys. Rev. C 82, 034909 (2010)
STAR: L Adamczyk et al, Phys. Lett. B 760, 689–696 (2016)
ATLAS: G Aad et al. JHEP 09, 050 (2015)
ALICE: K Aamodt et al, Phys. Rev. Lett. 108, 092301 (2012)
CMS: R Conway, Nucl. Phys. A 904–905, 451c (2013)
ALICE: J Adam et al, Phys. Lett. B 763, 238 (2016)
CMS: V Khachatryan et al, JHEP 04, 039 (2017)
ALICE: S Acharya et al, JHEP 11, 013 (2018)
M Xie, W Ke, H Zhang and X N Wang, arXiv:2208.14419 [hep-ph] (2022)
K Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)
S Satapathy, S Paul, A Anand, R Kumar and S Ghosh, J. Phys. G 47, 045201 (2020)
S Borsanyi, Z Fodor, C Hoelbling, S D Katz, S Krieg and K K Szabo, Phys. Lett. B 730, 99 (2014)
HotQCD: A Bazavov et al, Phys. Rev. D 90, 094503 (2014)
G S Bali, F Bruckmann, G Endrodi, Z Fodor, S D Katz and A Schäfer, Phys. Rev. D 86, 071502 (2012)
G S Bali, F Bruckmann, G Endrödi, S D Katz and A Schäfer, JHEP 08, 177 (2014)
X Li, W J Fu and Y X Liu, Phys. Rev. D 99, 074029 (2019)
A N Tawfik, A M Diab and M T Hussein, J. Phys. G 45, 055008 (2018)
A N Tawfik, A M Diab, N Ezzelarab and A G Shalaby, Adv. High Energy Phys. 2016, 1381479 (2016)
R L S Farias, V S Timoteo, S S Avancini, M B Pinto and G Krein, Eur. Phys. J. A 53, 101 (2017)
A Majumder, B Muller and X N Wang, Phys. Rev. Lett. 99, 192301 (2007)
J Casalderrey-Solana and X N Wang, Phys. Rev. C 77, 024902 (2008)
J Xu, J Liao and M Gyulassy, Chin. Phys. Lett. 32, 092501 (2015)
J Xu, J Liao and M Gyulassy, JHEP 02, 169 (2016)
E Shuryak, Rev. Mod. Phys. 89, 035001 (2017)
A Ayala, I Dominguez, J Jalilian-Marian and M E Tejeda-Yeomans, Phys. Rev. C 94, 024913 (2016)
A N Mishra, D Sahu and R Sahoo, MDPI Phys. 4, 315 (2022)
S Li, K A Mamo and H U Yee, Phys. Rev. D 94, 085016 (2016)
H Liu, K Rajagopal and U A Wiedemann, Phys. Rev. Lett. 97, 182301 (2006)
J Dey, S Satapathy, A Mishra, S Paul and S Ghosh, Int. J. Mod. Phys. E 30, 2150044 (2021)
HERMES: A Airapetian et al, Nucl. Phys. B 780, 1 (2007)
W T Deng and X N Wang, Phys. Rev. C 81, 024902 (2010)
X L Shang, A Li, Z Q Miao, G F Burgio and H J Schulze, Phys. Rev. C 101, 065801 (2020)
E Lifshitz and P L P, Physical kinetics (Elsevier, 1981)
X G Huang, M Huang, D H Rischke and A Sedrakian, Phys. Rev. D 81, 045015 (2010)
X G Huang, A Sedrakian and D H Rischke, Ann. Phys. 326, 3075 (2011)
K Tuchin, J. Phys. G 39, 025010 (2012)
S Li and H U Yee, Phys. Rev. D 97, 056024 (2018)
P Mohanty, A Dash and V Roy, Eur. Phys. J. A 55, 35 (2019)
S Ghosh, B Chatterjee, P Mohanty, A Mukharjee and H Mishra, Phys. Rev. D 100, 034024 (2019)
S i Nam and C W Kao, Phys. Rev. D 87, 114003 (2013)
A Dash et al, Phys. Rev. D 102, 016016 (2020)
A Das, H Mishra and R K Mohapatra, Phys. Rev. D 100, 114004 (2019)
G S Denicol et al, Phys. Rev. D 98, 076009 (2018)
Z Chen, C Greiner, A Huang and Z Xu, Phys. Rev. D 101, 056020 (2020)
J Dey, S Satapathy, P Murmu and S Ghosh, Pramana – J. Phys. 95, 125 (2021)
J Xu, A Buzzatti and M Gyulassy, JHEP 08, 063 (2014)
Y Hidaka and R D Pisarski, Phys. Rev. D 78, 071501 (2008)
Y Hidaka and R D Pisarski, Phys. Rev. D 81, 076002 (2010)
A Dumitru, Y Guo, Y Hidaka, C P K Altes and R D Pisarski, Phys. Rev. D 83, 034022 (2011)
S Lin, R D Pisarski and V V Skokov, Phys. Lett. B 730, 236 (2014)
J Liao and E Shuryak, Phys. Rev. C 75, 054907 (2007)
J Liao and E Shuryak, Phys. Rev. Lett. 101, 162302 (2008)
J Liao and E Shuryak, Phys. Rev. Lett. 109, 152001 (2012)
I Grishmanovskii, T Song, O Soloveva, C Greiner and E Bratkovskaya, Phys. Rev. C 106, 014903 (2022)
STAR: arXiv:2304.03430 [nucl-ex] (2023)
ALICE: S Acharya et al, Phys. Rev. Lett. 125, 022301 (2020)
S K Das, S Plumari, S Chatterjee, J Alam, F Scardina and V Greco, Phys. Lett. B 768, 260 (2017)
ATLAS and CMS: R Longo, EPJ Web Conf. 276, 05003 (2023)
J M Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)
S S Gubser, I R Klebanov and A M Polyakov, Phys. Lett. B 428, 105 (1998)
O Aharony, S S Gubser, J M Maldacena, H Ooguri and Y Oz, Phys. Rep. 323, 183 (2000)
Z q Zhang and K Ma, Eur. Phys. J. C 78, 532 (2018). https://inspirehep.net/literature/1080600
K A Mamo, JHEP 05, 121 (2015)
R Rougemont, Phys. Rev. D 102, 034009 (2020)
K J Eskola, H Honkanen, C A Salgado and U A Wiedemann, Nucl. Phys. A 747, 511 (2005)
A Dainese, C Loizides and G Paic, Eur. Phys. J. C 38, 461 (2005)
Acknowledgements
The authors acknowledge the following members of TPRC-IITBH who previously worked on quasiparticle picture [50, 68]: Sarthak Satapathy, Jayanta Dey, Anki Anand, Ranjesh Kumar, Ankita Mishra and Prasant Murmu. D Banerjee acknowledges the Inspire Fellowship research grant (DST/INSPIRE Fellowship/2018/IF180285). A Modak and P Das acknowledge the Institutional Fellowship research grant of Bose Institute. Significant part of computation for this work was carried out using the computing server facility at CAPSS, Bose Institute, Kolkata.
Author information
Authors and Affiliations
Corresponding author
Appendix A
Appendix A
In terms of the Fermi–Dirac (FD) distribution function of quarks and the Bose–Einstein (BE) distribution function of gluons, the energy density (\(\epsilon \)) of the QGP system can be expressed as
Here \(\omega _{g}\) and \(\omega _{Q}\) are energies and can be expressed as \(\omega _{g,Q} = \sqrt{\vec k^2+m_{g,Q}^2}\) and \(\beta = 1/T\). Here \(m_{g}\) and \(m_{Q}\) are masses of quarks and gluons. However, for massless QGP, \(m_{g,Q} = 0\). Therefore, for massless QGP, \(\omega _{g,Q} = \vec k_{g,Q}\). If one converts the volume integral to line integral, \(\int _{0}^{\infty } {\textrm{d}^{3}\vec {k}} \rightarrow 4\pi \int _{0}^{\infty }\vec {k}^{2} {\textrm{d}\vec {k}}\).
Equation (A.1) can be expressed as
If one considers \((1+n)x = a\) and \((1+n)y = b\), then eq. (A.2) can be represented as
Simplification of \(\int _{0}^{\infty } t^{3}\textrm{e}^{-t} {\textrm{d}t} = \Gamma (4) = 6\) and expanding binomially one can get
and
Pressure (P) of the QGP system follows similar prescription as the energy density (\(\epsilon \)).
Rights and permissions
About this article
Cite this article
Banerjee, D., Das, P., Paul, S. et al. Effect of magnetic field on jet transport coefficient \(\hat{q}\). Pramana - J Phys 97, 206 (2023). https://doi.org/10.1007/s12043-023-02683-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12043-023-02683-1