[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Common skin cancers and their association with other non-cutaneous primary malignancies: a review of the literature

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

It has long been recognized that a history of skin cancer puts one at risk for additional primary skin cancers. However, more variable data exists for the risk of developing a non-cutaneous primary cancer following a diagnosis of skin cancer. The data are most variable for Basal Cell Carcinoma (BCC), the most common and least aggressive type of skin cancer. While early studies imply that BCC does not impart a larger risk of other primary non-cutaneous cancers, more recent studies with larger populations suggest otherwise. The cancers most significantly associated with BCC are lip, oropharyngeal, and salivary gland cancer. There is also burgeoning evidence to suggest a link between BCC and prostate, breast, and colorectal cancer, but more data are needed to draw a concrete conclusion. Squamous Cell Carcinoma (SCC), the second most common type of skin cancer, has a slightly more defined risk to other non-cutaneous primary malignancies. There is a notable link between SCC and non-Hodgkin’s lymphoma (NHL), possibly due to immunosuppression. There is also an increased risk of other cancers derived from squamous epithelium following SCC, including oropharyngeal, lip, and salivary gland cancer. Some studies also suggest an increased risk of respiratory tract cancer following SCC, possibly due to shared risk factors. Melanoma, a more severe type of skin cancer, shows a well-defined risk of additional primary non-cutaneous malignancies. The most significant of these risks include NHL, thyroid cancer, prostate cancer, and breast cancer along with a host of other cancers. Each of these three main skin cancer types has a profile of genetic mutations that have also been linked to non-cutaneous malignancies. In this review, we discuss a selection of these genes to highlight the complex interplay between different tumorigenesis processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data and materials referenced in this manuscript are openly available from the National Library of Medicine PubMed repository at https://pubmed.ncbi.nlm.nih.gov/.

References

  1. Skin cancer. 2023. https://www.aad.org/media/stats-skin-cancer. Accessed 13 Sept 2023

  2. Martens MC, Seebode C, Lehmann J, Emmert S. Photocarcinogenesis and skin cancer prevention strategies: an update. Anticancer Res. 2018;38(2):1153–8.

    CAS  PubMed  Google Scholar 

  3. Melanoma of the skin—cancer stat facts. SEER. 2023. https://seer.cancer.gov/statfacts/html/melan.html. Accessed 23 Oct 2023

  4. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222–48. https://doi.org/10.3390/ijms140612222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. González Maglio DH, Paz ML, Leoni J. Sunlight effects on immune system: is there something else in addition to UV-induced immunosuppression? Biomed Res Int. 2016;2016:1934518. https://doi.org/10.1155/2016/1934518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018;50(4):20. https://doi.org/10.1038/s12276-018-0038-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McDaniel B, Badri T, Steele RB. Basal Cell Carcinoma. In: StatPearls. StatPearls Publishing. 2023. http://www.ncbi.nlm.nih.gov/books/NBK482439/. Accessed 13 Sept 2023

  8. Wong CSM, Strange RC, Lear JT. Basal cell carcinoma. BMJ. 2003;327(7418):794–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bower CP, Lear JT, Bygrave S, Etherington D, Harvey I, Archer CB. Basal cell carcinoma and risk of subsequent malignancies: a cancer registry-based study in Southwest England. J Am Acad Dermatol. 2000;42(6):988–91.

    Article  CAS  PubMed  Google Scholar 

  10. Melanoma skin cancer risk factors | melanoma risk factors. 2023. https://www.cancer.org/cancer/types/melanoma-skin-cancer/causes-risks-prevention/risk-factors.html. Accessed 26 Sept 2023

  11. Kuru H, Jokelainen J, Tasanen K, Huilaja L. Risk of non-cutaneous cancers in individuals with basal cell carcinoma: a population-based cohort study. Acta Dermato-Venereologica. 2022;102:adv00826-00826. https://doi.org/10.2340/actadv.v102.4451.

    Article  PubMed  Google Scholar 

  12. Karagas MR, Greenberg ER, Mott LA, Baron JA, Ernster VL. Occurrence of other cancers among patients with prior basal cell and squamous cell skin cancer. Cancer Epidemiol Biomarkers Prev. 1998;7(2):157–61.

    CAS  PubMed  Google Scholar 

  13. Rees JR, Zens MS, Gui J, Celaya MO, Riddle BL, Karagas MR. Non melanoma skin cancer and subsequent cancer risk. PLoS ONE. 2014;9(6):e99674. https://doi.org/10.1371/journal.pone.0099674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wheless L, Black J, Alberg AJ. Nonmelanoma skin cancer and the risk of second primary cancers: a systematic review. Cancer Epidemiol Biomark Prev. 2010;19(7):1686–95. https://doi.org/10.1158/1055-9965.EPI-10-0243.

    Article  Google Scholar 

  15. Toprani SM, Kelkar Mane V. A short review on DNA damage and repair effects in lip cancer. Hematol Oncol Stem Cell Ther. 2021;14(4):267–74. https://doi.org/10.1016/j.hemonc.2021.01.007.

    Article  CAS  PubMed  Google Scholar 

  16. de Vries E, Soerjomataram I, Houterman S, Louwman MWJ, Coebergh JWW. Decreased risk of prostate cancer after skin cancer diagnosis: a protective role of ultraviolet radiation? Am J Epidemiol. 2007;165(8):966–72. https://doi.org/10.1093/aje/kwk084.

    Article  PubMed  Google Scholar 

  17. Soerjomataram I, Louwman WJ, Lemmens VEPP, Coebergh JWW, de Vries E. Are patients with skin cancer at lower risk of developing colorectal or breast cancer? Am J Epidemiol. 2008;167(12):1421–9. https://doi.org/10.1093/aje/kwn077.

    Article  CAS  PubMed  Google Scholar 

  18. Cantwell MM, Murray LJ, Catney D, et al. Second primary cancers in patients with skin cancer: a population-based study in Northern Ireland. Br J Cancer. 2009;100(1):174–7. https://doi.org/10.1038/sj.bjc.6604842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho HG, Kuo KY, Li S, et al. Frequent basal cell cancer development is a clinical marker for inherited cancer susceptibility. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.122744.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Broustas CG, Lieberman HB. DNA damage response genes and the development of cancer metastasis. Radiat Res. 2014;181(2):111–30. https://doi.org/10.1667/RR13515.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nawrocka PM, Galka-Marciniak P, Urbanek-Trzeciak MO, et al. Profile of basal cell carcinoma mutations and copy number alterations—focus on gene-associated noncoding variants. Front Oncol. 2021;11:752579. https://doi.org/10.3389/fonc.2021.752579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pellegrini C, Maturo MG, Di Nardo L, Ciciarelli V, Gutiérrez García-Rodrigo C, Fargnoli MC. Understanding the molecular genetics of basal cell carcinoma. Int J Mol Sci. 2017;18(11):2485. https://doi.org/10.3390/ijms18112485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kilgour JM, Jia JL, Sarin KY. Review of the molecular genetics of basal cell carcinoma; inherited susceptibility, somatic mutations, and targeted therapeutics. Cancers (Basel). 2021;13(15):3870. https://doi.org/10.3390/cancers13153870.

    Article  CAS  PubMed  Google Scholar 

  24. Gurung B, Hua X, Runske M, et al. PTCH 1 staining of pancreatic neuroendocrine tumor (PNET) samples from patients with and without multiple endocrine neoplasia (MEN-1) syndrome reveals a potential therapeutic target. Cancer Biol Ther. 2015;16(2):219–24. https://doi.org/10.4161/15384047.2014.987574.

    Article  CAS  PubMed  Google Scholar 

  25. Rosow DE, Liss AS, Strobel O, et al. Sonic hedgehog in pancreatic cancer: from bench to bedside, then back to the bench. Surgery. 2012;152(3 0 1):S19. https://doi.org/10.1016/j.surg.2012.05.030.

    Article  PubMed  Google Scholar 

  26. Wang CY, Chang YC, Kuo YL, et al. Mutation of the PTCH1 gene predicts recurrence of breast cancer. Sci Rep. 2019;9:16359. https://doi.org/10.1038/s41598-019-52617-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Briggs KJ, Corcoran-Schwartz IM, Zhang W, et al. Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev. 2008;22(6):770–85. https://doi.org/10.1101/gad.1640908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Chen H, Jiao X, et al. PTCH1 mutation promotes antitumor immunity and the response to immune checkpoint inhibitors in colorectal cancer patients. Cancer Immunol Immunother. 2022;71(1):111–20. https://doi.org/10.1007/s00262-021-02966-9.

    Article  CAS  PubMed  Google Scholar 

  29. Chung JH, Bunz F. A loss-of-function mutation in PTCH1 suggests a role for autocrine hedgehog signaling in colorectal tumorigenesis. Oncotarget. 2013;4(12):2208–11.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jeng KS, Sheen IS, Leu CM, Tseng PH, Chang CF. The role of smoothened in cancer. Int J Mol Sci. 2020;21(18):6863. https://doi.org/10.3390/ijms21186863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xie J, Murone M, Luoh SM, et al. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998;391(6662):90–2. https://doi.org/10.1038/34201.

    Article  CAS  PubMed  Google Scholar 

  32. Mittrücker HW, Matsuyama T, Grossman A, et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science. 1997;275(5299):540–3. https://doi.org/10.1126/science.275.5299.540.

    Article  PubMed  Google Scholar 

  33. Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 2014;4(6):a014241. https://doi.org/10.1101/cshperspect.a014241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wong RWJ, Ong JZL, Theardy MS, Sanda T. IRF4 as an oncogenic master transcription factor. Cancers (Basel). 2022;14(17):4314. https://doi.org/10.3390/cancers14174314.

    Article  CAS  PubMed  Google Scholar 

  35. Han J, Qureshi AA, Nan H, et al. A germline variant in the interferon regulatory factor 4 gene as a novel skin cancer risk locus. Cancer Res. 2011;71(5):1533–9. https://doi.org/10.1158/0008-5472.CAN-10-1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cherian MA, Olson S, Sundaramoorthi H, et al. An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem. 2018;293(18):6844–58. https://doi.org/10.1074/jbc.RA117.000164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. PTPN14 protein tyrosine phosphatase non-receptor type 14 [Homo sapiens (human)]—Gene-NCBI.  2023. https://www.ncbi.nlm.nih.gov/gene/5784. Accessed 2 Oct 2023

  38. Werneburg N, Gores GJ, Smoot RL. The hippo pathway and YAP signaling: emerging concepts in regulation, signaling, and experimental targeting strategies with implications for hepatobiliary malignancies. Gene Expr. 2020;20(1):67–74. https://doi.org/10.3727/105221619X15617324583639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilson KE, Yang N, Mussell AL, Zhang J. The regulatory role of KIBRA and PTPN14 in hippo signaling and beyond. Genes (Basel). 2016;7(6):23. https://doi.org/10.3390/genes7060023.

    Article  CAS  PubMed  Google Scholar 

  40. Bonilla X, Parmentier L, King B, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48(4):398–406. https://doi.org/10.1038/ng.3525.

    Article  CAS  PubMed  Google Scholar 

  41. Olafsdottir T, Stacey SN, Sveinbjornsson G, et al. Loss-of-function variants in the tumor-suppressor gene PTPN14 Confer increased cancer risk. Cancer Res. 2021;81(8):1954–64. https://doi.org/10.1158/0008-5472.CAN-20-3065.

    Article  CAS  PubMed  Google Scholar 

  42. Wang R, Du Y, Shang J, Dang X, Niu G. PTPN14 acts as a candidate tumor suppressor in prostate cancer and inhibits cell proliferation and invasion through modulating LATS1/YAP signaling. Mol Cell Probes. 2020;53:101642. https://doi.org/10.1016/j.mcp.2020.101642.

    Article  CAS  PubMed  Google Scholar 

  43. Howell JY, Ramsey ML. Squamous Cell Skin Cancer. In: StatPearls. StatPearls Publishing. 2023. http://www.ncbi.nlm.nih.gov/books/NBK441939/. Accessed 20 Sept 2023

  44. Keir JA, Whiteside OJ, Winter SC, Maitra S, Corbridge RC, Cox GJ. Outcomes in squamous cell carcinoma with advanced neck disease. Ann R Coll Surg Engl. 2007;89(7):703–8. https://doi.org/10.1308/003588407X205314.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sánchez-Danés A, Blanpain C. Deciphering the cells of origin of squamous cell carcinomas. Nat Rev Cancer. 2018;18(9):549–61. https://doi.org/10.1038/s41568-018-0024-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Varra V, Woody NM, Reddy C, et al. Suboptimal outcomes in cutaneous squamous cell cancer of the head and neck with nodal metastases. Anticancer Res. 2018;38(10):5825–30. https://doi.org/10.21873/anticanres.12923.

    Article  PubMed  Google Scholar 

  47. Corchado-Cobos R, García-Sancha N, González-Sarmiento R, Pérez-Losada J, Cañueto J. Cutaneous squamous cell carcinoma: from biology to therapy. Int J Mol Sci. 2020;21(8):2956. https://doi.org/10.3390/ijms21082956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yanofsky VR, Mercer SE, Phelps RG. Histopathological variants of cutaneous squamous cell carcinoma: a review. J Skin Cancer. 2011;2011:210813. https://doi.org/10.1155/2011/210813.

    Article  PubMed  Google Scholar 

  49. Gallagher RP, Bajdik CD, Fincham S, et al. Chemical exposures, medical history, and risk of squamous and basal cell carcinoma of the skin. Cancer Epidemiol Biomark Prev. 1996;5(6):419–24.

    CAS  Google Scholar 

  50. Wassberg C, Thörn M, Yuen J, Ringborg U, Hakulinen T. Second primary cancers in patients with squamous cell carcinoma of the skin: a population-based study in Sweden. Int J Cancer. 1999;80(4):511–5.

    Article  CAS  PubMed  Google Scholar 

  51. Hemminki K, Jiang Y, Steineck G. Skin cancer and non-hodgkin’s lymphoma as second malignancies. Markers of impaired immune function? Eur J Cancer. 2003;39(2):223–9. https://doi.org/10.1016/s0959-8049(02)00595-6.

    Article  CAS  PubMed  Google Scholar 

  52. Chamoli A, Gosavi AS, Shirwadkar UP, et al. Overview of oral cavity squamous cell carcinoma: risk factors, mechanisms, and diagnostics. Oral Oncol. 2021;121:105451. https://doi.org/10.1016/j.oraloncology.2021.105451.

    Article  PubMed  Google Scholar 

  53. Jo U, Song JS, Choi SH, Nam SY, Kim SY, Cho KJ. Primary squamous cell carcinoma of the salivary gland: immunohistochemical analysis and comparison with metastatic squamous cell carcinoma. J Pathol Transl Med. 2020;54(6):489–96. https://doi.org/10.4132/jptm.2020.07.19.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen J, Ruczinski I, Jorgensen TJ, et al. Nonmelanoma skin cancer and risk for subsequent malignancy. J Natl Cancer Inst. 2008;100(17):1215–22. https://doi.org/10.1093/jnci/djn260.

    Article  PubMed  PubMed Central  Google Scholar 

  55. NOTCH1 gene: MedlinePlus Genetics. 2023. https://medlineplus.gov/genetics/gene/notch1/. Accessed 22 Sept 2023

  56. Hedberg ML, Berry CT, Moshiri AS, et al. Molecular mechanisms of cutaneous squamous cell carcinoma. Int J Mol Sci. 2022;23(7):3478. https://doi.org/10.3390/ijms23073478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shah PA, Huang C, Li Q, et al. NOTCH1 signaling in head and neck squamous cell carcinoma. Cells. 2020;9(12):2677. https://doi.org/10.3390/cells9122677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dotto GP, Rustgi AK. Squamous cell cancers: a unified perspective on biology and genetics. Cancer Cell. 2016;29(5):622–37. https://doi.org/10.1016/j.ccell.2016.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Palomero T, Lim WK, Odom DT, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103(48):18261–6. https://doi.org/10.1073/pnas.0606108103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017;129(9):1124–33. https://doi.org/10.1182/blood-2016-09-692582.

    Article  CAS  PubMed  Google Scholar 

  61. Yuan X, Zhang M, Wu H, et al. Expression of Notch1 correlates with breast cancer progression and prognosis. PLoS ONE. 2015;10(6):e0131689. https://doi.org/10.1371/journal.pone.0131689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gharaibeh L, Elmadany N, Alwosaibai K, Alshaer W. Notch1 in cancer therapy: possible clinical implications and challenges. Mol Pharmacol. 2020;98(5):559–76. https://doi.org/10.1124/molpharm.120.000006.

    Article  CAS  PubMed  Google Scholar 

  63. Aster JC, Pear WS, Blacklow SC. The varied roles of Notch in cancer. Annu Rev Pathol. 2017;12:245–75. https://doi.org/10.1146/annurev-pathol-052016-100127.

    Article  CAS  PubMed  Google Scholar 

  64. KMT2D gene: MedlinePlus Genetics. Accessed October 23. 2023. https://medlineplus.gov/genetics/gene/kmt2d/.

  65. Froimchuk E, Jang Y, Ge K. Histone H3 lysine 4 methyltransferase KMT2D. Gene. 2017;627:337–42. https://doi.org/10.1016/j.gene.2017.06.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dauch C, Shim S, Cole MW, et al. KMT2D loss drives aggressive tumor phenotypes in cutaneous squamous cell carcinoma. Am J Cancer Res. 2022;12(3):1309–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pan Y, Han H, Hu H, et al. KMT2D deficiency drives lung squamous cell carcinoma and hypersensitivity to RTK-RAS inhibition. Cancer Cell. 2023;41(1):88–e1058. https://doi.org/10.1016/j.ccell.2022.11.015.

    Article  CAS  PubMed  Google Scholar 

  68. Peng Z, Gong Y, Liang X. Role of FAT1 in health and disease. Oncol Lett. 2021;21(5):398. https://doi.org/10.3892/ol.2021.12659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen ZG, Saba NF, Teng Y. The diverse functions of FAT1 in cancer progression: good, bad, or ugly? J Exp Clin Cancer Res. 2022;41(1):248. https://doi.org/10.1186/s13046-022-02461-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Z, Lin K, Xiao H. A pan-cancer analysis of the FAT1 in human tumors. Sci Rep. 2022;12(1):21598. https://doi.org/10.1038/s41598-022-26008-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gatti V, Fierro C, Annicchiarico-Petruzzelli M, Melino G, Peschiaroli A. ∆Np63 in squamous cell carcinoma: defining the oncogenic routes affecting epigenetic landscape and tumour microenvironment. Mol Oncol. 2019;13(5):981–1001. https://doi.org/10.1002/1878-0261.12473.

    Article  PubMed  PubMed Central  Google Scholar 

  72. TP63 gene: MedlinePlus Genetics. 2023. https://medlineplus.gov/genetics/gene/tp63/. Accessed 23 Oct 2023

  73. Bankhead A, McMaster T, Wang Y, Boonstra PS, Palmbos PL. TP63 isoform expression is linked with distinct clinical outcomes in cancer. EBioMedicine. 2020;51:102561. https://doi.org/10.1016/j.ebiom.2019.11.022.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gaya JM, López-Martínez JM, Karni-Schmidt O, et al. ∆Np63 expression is a protective factor of progression in clinical high grade T1 bladder cancer. J Urol. 2015;193(4):1144–50. https://doi.org/10.1016/j.juro.2014.10.098.

    Article  CAS  PubMed  Google Scholar 

  75. Lu C, Yang Y, Ma S. A functional variant (Rs35592567) in TP63 at 3q28 is associated with gastric cancer risk via modifying its regulation by microRNA-140. Cell Physiol Biochem. 2018;47(1):235–44. https://doi.org/10.1159/000489802.

    Article  CAS  PubMed  Google Scholar 

  76. Marsh T, Debnath J. Autophagy suppresses breast cancer metastasis by degrading NBR1. Autophagy. 2020;16(6):1164–5. https://doi.org/10.1080/15548627.2020.1753001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang Y, Zhao G, Condello S, et al. Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 2021;81(2):384–99. https://doi.org/10.1158/0008-5472.CAN-20-1488.

    Article  CAS  PubMed  Google Scholar 

  78. Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. Vivo. 2014;28(6):1005–11.

    Google Scholar 

  79. Melanoma Survival rates | melanoma survival statistics. 2023. https://www.cancer.org/cancer/types/melanoma-skin-cancer/detection-diagnosis-staging/survival-rates-for-melanoma-skin-cancer-by-stage.html. Accessed 26 Sept 2023

  80. MacKie RM, Hauschild A, Eggermont AMM. Epidemiology of invasive cutaneous melanoma. Ann Oncol. 2009;20:vi1–7. https://doi.org/10.1093/annonc/mdp252.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Melanoma. MedlinePlus Genetics. 2023. https://medlineplus.gov/genetics/condition/melanoma/. Accessed 26 Sept 2023

  82. Bradford PT, Freedman DM, Goldstein AM, Tucker MA. Increased risk of second primary cancers after a diagnosis of melanoma. Arch Dermatol. 2010;146(3):265–72. https://doi.org/10.1001/archdermatol.2010.2.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Freedman M, Miller BA, Tucker MA. 2023. New malignancies among cancer survivors—SEER cancer registries, 1973–2000: new malignancies following melanoma of the skin, eye melanoma, and non-melanoma eye cancer. NIH Publ. 2006;No. 05-5302. https://seer.cancer.gov/archive/publications/mpmono/index.html. Accessed 31 Aug 2023

  84. Balamurugan A, Rees JR, Kosary C, Rim SH, Li J, Stewart SL. Subsequent primary cancers among men and women with in situ and invasive melanoma of the skin. J Am Acad Dermatol. 2011;65(5):S69. .e1-S69.e9.

    Article  PubMed  Google Scholar 

  85. Caini S, Boniol M, Botteri E, et al. The risk of developing a second primary cancer in melanoma patients: a comprehensive review of the literature and meta-analysis. J Dermatol Sci. 2014;75(1):3–9. https://doi.org/10.1016/j.jdermsci.2014.02.007.

    Article  PubMed  Google Scholar 

  86. Kimlin MG, Youlden DR, Brodie AM, et al. Risk of second primary cancer in survivors of in situ melanoma. J Invest Dermatol. 2019;139(4):842–7. https://doi.org/10.1016/j.jid.2018.11.001.

    Article  CAS  PubMed  Google Scholar 

  87. Caini S, Radice D, Tosti G, et al. Risk of second primary malignancies among 1537 melanoma patients and risk of second primary melanoma among 52 354 cancer patients in Northern Italy. J Eur Acad Dermatol Venereol. 2016;30(9):1491–6. https://doi.org/10.1111/jdv.13645.

    Article  CAS  PubMed  Google Scholar 

  88. Lens MB, Newton-Bishop JA. An association between cutaneous melanoma and non-hodgkin’s lymphoma: pooled analysis of published data with a review. Ann Oncol. 2005;16(3):460–5. https://doi.org/10.1093/annonc/mdi080.

    Article  CAS  PubMed  Google Scholar 

  89. Famenini S, Martires KJ, Zhou H, Xavier MF, Wu JJ. Melanoma in patients with chronic lymphocytic leukemia and non-hodgkin lymphoma. J Am Acad Dermatol. 2015;72(1):78–84. https://doi.org/10.1016/j.jaad.2014.09.030.

    Article  PubMed  Google Scholar 

  90. Allam MF, Serrano PFC, Serrano JLFC, Abd Elaziz KM, Del Castillo AS, Navajas RFC. Cutaneous melanoma, Hodgkin’s lymphoma and non-hodgkin’s lymphoma: common risk factors? Cent Eur J Public Health. 2015;23(2):119–21. https://doi.org/10.21101/cejph.a4090.

    Article  PubMed  Google Scholar 

  91. Crocetti E, Guzzinati S, Paci E, et al. The risk of developing a second, different, cancer among 14 560 survivors of malignant cutaneous melanoma: a study by AIRTUM (the Italian Network of Cancer registries). Melanoma Res. 2008;18(3):230. https://doi.org/10.1097/CMR.0b013e3282fafd0a.

    Article  PubMed  Google Scholar 

  92. Zerfaoui M, Dokunmu TM, Toraih EA, Rezk BM, Abd Elmageed ZY, Kandil E. New insights into the link between melanoma and thyroid cancer: role of nucleocytoplasmic trafficking. Cells. 2021;10(2):367. https://doi.org/10.3390/cells10020367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. BRAF mutation and cancer. 2023. https://www.hopkinsmedicine.org/health/conditions-and-diseases/braf-mutation-and-cancer. Accessed 1 Oct 2023

  94. Lazzara DR, Zarkhin SG, Rubenstein SN, Glick BP. Melanoma and thyroid carcinoma: our current understanding. J Clin Aesthet Dermatol. 2019;12(9):39–41.

    PubMed  PubMed Central  Google Scholar 

  95. Bauer J, Weng J, Kebebew E, Soares P, Trovisco V, Bastian BC. Germline variation of the melanocortin-1 receptor does not explain shared risk for melanoma and thyroid cancer. Exp Dermatol. 2009;18(6):548–52. https://doi.org/10.1111/j.1600-0625.2008.00827.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mitchell B, Dhingra JK, Mahalingam M. BRAF and epithelial-mesenchymal transition: lessons from papillary thyroid carcinoma and primary cutaneous melanoma. Adv Anat Pathol. 2016;23(4):244–71. https://doi.org/10.1097/PAP.0000000000000113.

    Article  CAS  PubMed  Google Scholar 

  97. Acharya P, Mathur M. Prostate cancer risk in patients with melanoma: a systematic review and meta-analysis. Cancer Med. 2020;9(10):3604–12. https://doi.org/10.1002/cam4.2995.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jeyakumar A, Chua TC, Lam AKY, Gopalan V. The melanoma and breast cancer association: an overview of their second primary cancers and the epidemiological, genetic and biological correlations. Crit Rev Oncol Hematol. 2020;152:102989. https://doi.org/10.1016/j.critrevonc.2020.102989.

    Article  PubMed  Google Scholar 

  99. Goggins W, Gao W, Tsao H. Association between female breast cancer and cutaneous melanoma. Int J Cancer. 2004;111(5):792–4. https://doi.org/10.1002/ijc.20322.

    Article  CAS  PubMed  Google Scholar 

  100. Bhari N, Schwaertz RA, Apalla Z, et al. Effect of estrogen in malignant melanoma. J Cosmet Dermatol. 2022;21(5):1905–12. https://doi.org/10.1111/jocd.14391.

    Article  PubMed  Google Scholar 

  101. Frank C, Sundquist J, Hemminki A, Hemminki K. Risk of other cancers in families with melanoma: novel familial links. Sci Rep. 2017;7:42601. https://doi.org/10.1038/srep42601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. CDKN2A gene: MedlinePlus Genetics. 2023. https://medlineplus.gov/genetics/gene/cdkn2a/. Accessed 24 Oct 2023

  103. Toussi A, Mans N, Welborn J, Kiuru M. Germline mutations predisposing to melanoma. J Cutan Pathol. 2020;47(7):606–16. https://doi.org/10.1111/cup.13689.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Goldstein AM, Chan M, Harland M, et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006;66(20):9818–28. https://doi.org/10.1158/0008-5472.CAN-06-0494.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang D, Wang T, Zhou Y, Zhang X. Comprehensive analyses of cuproptosis-related gene CDKN2A on prognosis and immunologic therapy in human tumors. Med (Baltim). 2022;102(14):e33468. https://doi.org/10.1097/MD.0000000000033468.

    Article  CAS  Google Scholar 

  106. Lee KC, Higgins HW, Qureshi AA. Familial risk of melanoma and links with other cancers. Melanoma Manag. 2015;2(1):83–9. https://doi.org/10.2217/mmt.14.34.

    Article  PubMed  PubMed Central  Google Scholar 

  107. CDK4 cyclin dependent kinase 4 [Homo sapiens (human)]—Gene-NCBI. 2023. https://www.ncbi.nlm.nih.gov/gene/1019. Accessed 24 Oct 2023

  108. Sheppard KE, McArthur GA. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res. 2013;19(19):5320–8. https://doi.org/10.1158/1078-0432.CCR-13-0259.

    Article  CAS  PubMed  Google Scholar 

  109. Fassl A, Geng Y, Sicinski P. CDK4 and CDK6 kinases: from basic science to cancer therapy. Science. 2022;375(6577):eabc1495. https://doi.org/10.1126/science.abc1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Baker SJ, Poulikakos PI, Irie HY, Parekh S, Reddy EP. CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer. 2022;13:21–45. https://doi.org/10.18632/genesandcancer.221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dai M, Zhang C, Ali A, et al. CDK4 regulates cancer stemness and is a novel therapeutic target for triple-negative breast cancer. Sci Rep. 2016;6:35383. https://doi.org/10.1038/srep35383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Triple-negative. Breast cancer | details, diagnosis, and signs. https://www.cancer.org/cancer/types/breast-cancer/about/types-of-breast-cancer/triple-negative.html. Accessed 24 Oct 2023

  113. Garutti M, Targato G, Buriolla S, Palmero L, Minisini AM, Puglisi F. CDK4/6 inhibitors in melanoma: a comprehensive review. Cells. 2021;10(6):1334. https://doi.org/10.3390/cells10061334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. BAP1 gene: MedlinePlus Genetics. 2023. https://medlineplus.gov/genetics/gene/bap1/. Accessed 24 Oct 2023

  115. BAP1 tumor predisposition syndrome: MedlinePlus Genetics. 2023. https://medlineplus.gov/genetics/condition/bap1-tumor-predisposition-syndrome/. Accessed 24 Oct 2023

  116. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and Cancer. Nat Rev Cancer. 2013;13(3):153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Carbone M, Ferris LK, Baumann F, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Translational Med. 2012;10(1):179. https://doi.org/10.1186/1479-5876-10-179.

    Article  CAS  Google Scholar 

  118. Davis EJ, Johnson DB, Sosman JA, Chandra S. Melanoma: what do all the mutations mean? Cancer. 2018;124(17):3490–9. https://doi.org/10.1002/cncr.31345.

    Article  PubMed  Google Scholar 

  119. Cheung M, Testa JR. BAP1, a tumor suppressor gene driving malignant mesothelioma. Transl Lung Cancer Res. 2017;6(3):270–8. https://doi.org/10.21037/tlcr.2017.05.03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Carbone M, Harbour JW, Brugarolas J, et al. Biological mechanisms and clinical significance of BAP1 mutations in human cancer. Cancer Discov. 2020;10(8):1103–20. https://doi.org/10.1158/2159-8290.CD-19-1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu Y, Poulos RC, Reddel RR. Role of POT1 in human cancer. Cancers (Basel). 2020;12(10):2739. https://doi.org/10.3390/cancers12102739.

    Article  CAS  PubMed  Google Scholar 

  122. Zade NH, Khattar E. POT1 mutations cause differential effects on telomere length leading to opposing disease phenotypes. J Cell Physiol. 2023;238(6):1237–55. https://doi.org/10.1002/jcp.31034.

    Article  CAS  PubMed  Google Scholar 

  123. Robles-Espinoza CD, Harland M, Ramsay AJ, et al. POT1 loss-of-function variants predispose to familial melanoma. Nat Genet. 2014;46(5):478–81. https://doi.org/10.1038/ng.2947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Henry ML, Osborne J, Else T et al. POT1 Tumor Predisposition. In: Adam MP, Feldman J, Mirzaa GM (eds). GeneReviews®. University of Washington, Seattle. 1993. . http://www.ncbi.nlm.nih.gov/books/NBK563529/. Accessed 24 Oct 2023

  125. MITF gene: MedlinePlus Genetics. 2024. https://medlineplus.gov/genetics/gene/mitf/.  Accessed 9 Apr 2024

  126. Koludrovic D, Davidson I. MITF, the Janus transcription factor of melanoma. Future Oncol. 2013;9(2):235–44. https://doi.org/10.2217/fon.12.177.

    Article  CAS  PubMed  Google Scholar 

  127. Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci. 2015;72(7):1249–60. https://doi.org/10.1007/s00018-014-1791-0.

    Article  CAS  PubMed  Google Scholar 

  128. Oliveira LJC, Gongora ABL, Lima FAS, et al. Expanding the phenotype of E318K (c.952G > A) MITF germline mutation carriers: case series and review of the literature. Hered Cancer Clin Pract. 2021;19(1):32. https://doi.org/10.1186/s13053-021-00189-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wei S, Testa JR, Argani P. A review of neoplasms with MITF/MiT family translocations. Histol Histopathol. 2022;37(4):311–21. https://doi.org/10.14670/HH-18-426.

    Article  CAS  PubMed  Google Scholar 

  130. Guhan SM, Artomov M, McCormick S, et al. Cancer risks associated with the germline MITF(E318K) variant. Sci Rep. 2020;10(1):17051. https://doi.org/10.1038/s41598-020-74237-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hsiao YJ, Chang WH, Chen HY, et al. MITF functions as a tumor suppressor in non-small cell lung cancer beyond the canonically oncogenic role. Aging. 2020;13(1):646–74. https://doi.org/10.18632/aging.202171.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Dr. Michael Gold, without whose guidance and mentorship this review could not have been written.

Funding

The author received no funding for the research described in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the submitted work, including data collection, analysis and interpretation, and manuscript preparation.

Corresponding author

Correspondence to Lindsay Holic.

Ethics declarations

Conflict of interest

The author certifies that she has no affiliations with or involvement in any organization or entity with any financial or non-financial interest regarding the research described in this manuscript. The author declares that she has no relevant material or financial interests that relate to the research described in this paper.

Ethical approval

No specific permissions were required in the writing of this manuscript.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holic, L. Common skin cancers and their association with other non-cutaneous primary malignancies: a review of the literature. Med Oncol 41, 157 (2024). https://doi.org/10.1007/s12032-024-02385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02385-7

Keywords

Navigation