[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Brain Uptake and Utilization of Fatty Acids, Lipids and Lipoproteins: Application to Neurological Disorders

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Transport, synthesis, and utilization of brain fatty acids and other lipids have been topics of investigation for more than a century, yet many fundamental aspects are unresolved and, indeed, subject to controversy. Understanding the mechanisms by which lipids cross the blood brain barrier and how they are utilized by neurons and glia is critical to understanding normal brain development and function, for the diagnosis and therapy of human diseases, and for the planning and delivery of optimal human nutrition throughout the world. Two particularly important fatty acids, both of which are abundant in neuronal membranes are: (a) the ω3 polyunsaturated fatty acid docosahexaenoic acid, deficiencies of which can impede brain development and compromise optimal brain function, and (b) the ω6 polyunsaturated fatty acid arachidonic acid, which yields essential, but potentially toxic, metabolic products. There is an exciting emerging evidence that modulating dietary intake of these fatty acids could have a beneficial effect on human neurological health. A workshop was held in October, 2004, in which investigators from diverse disciplines interacted to present new findings and to discuss issues relevant to lipid uptake, utilization, and metabolism in the brain. The objectives of this workshop were: (1) to assess the state-of-the-art of research in brain fatty acid/lipid uptake and utilization; (2) to discuss progress in understanding molecular mechanisms and the treatment of neurological diseases related to lipids and lipoproteins; (3) to identify areas in which current knowledge is insufficient; (4) to provide recommendations for future research; and (5) to stimulate the interest and involvement of additional neuroscientists, particularly young scientists, in these areas. The meeting was divided into four sessions: (1) mechanisms of lipid uptake and transport in the brain, (2) lipoproteins and polyunsaturated fatty acids, (3) eicosanoids in brain function, and (4) fatty acids and lipids in brain disorders. In this article, we will provide an overview of the topics discussed in these sessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abumrad, N. A., el-Maghrabi, M. R., Amri, E. Z., Lopez, E., & Grimaldi, P. A. (1993). Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. Journal of Biological Chemistry, 268, 17665–17668.

    PubMed  CAS  Google Scholar 

  • Alkayed, N. J., Goyagi, T., Joh, H. D., Klaus, J., Harder, D. R., Traystman, R. J., et al. (2002). Neuroprotection and P450 2C11 upregulation after experimental transient ischemic attack. Stroke, 33, 1677–1684.

    Article  PubMed  CAS  Google Scholar 

  • Andreasson, K. I., Savonenko, A., Vidensky, S., Goellner, J. J., Zhang, Y., Shaffer, A., et al. (2001). Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. Journal of Neuroscience, 21, 8198–8209.

    PubMed  CAS  Google Scholar 

  • Arlt, S., Beisiegel, U., & Kontush, A. (2002). Lipid peroxidation in neurodegeneration: new insights into Alzheimer’s disease. Current Opinion in Lipidology, 13, 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, N. G., Colangelo, V., & Lukiw, W. J. (2002). Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostaglandins & Other Lipid Mediators, 68–69, 197–210.

    Article  Google Scholar 

  • Beffert, U., Stolt, P. C., & Herz, J. (2004). Functions of lipoprotein receptors in neurons. Journal of Lipid Research, 45, 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Beisiegel, U., & Spector, A. A. (2001). Lipids and lipoproteins in the brain. Current Opinion in Lipidology, 12, 243–244.

    Article  PubMed  CAS  Google Scholar 

  • Coe, N. R., Smith, A. J., Frohnert, B. I., Watkins, P. A., & Bernlohr, D. A. (1999). The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. Journal of Biological Chemistry, 274, 36300–36304.

    Article  PubMed  CAS  Google Scholar 

  • Cunnane, S. C., Williams, S. C., Bell, J. D., Brookes, S., Craig, K., Iles, R. A., et al. (1994). Utilization of uniformly labeled 13C-polyunsaturated fatty acids in the synthesis of long-chain fatty acids and cholesterol accumulating in the neonatal rat brain. Journal of Neurochemistry, 62, 2429–2436.

    Article  PubMed  CAS  Google Scholar 

  • Edmond, J., Higa, T. A., Korsak, R. A., Bergner, E. A., & Lee, W. -N. P. (1998). Fatty acid transport and utilization for the developing brain. Journal of Neurochemistry, 70, 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  • Fam, S. S., & Morrow, J. D. (2003). The isoprostanes: Unique products of arachidonic acid oxidation—a review. Current Medicinal Chemistry, 10, 1723–1740.

    Article  PubMed  CAS  Google Scholar 

  • Fam, S. S., Murphey, L. J., Terry, E. S., Zackert, W. E., Chen, Y., & Gao, L., et al. (2002). Formation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid. Journal of Biological Chemistry, 277, 36076–36084.

    Article  PubMed  CAS  Google Scholar 

  • Febbraio, M., Guy, E., Coburn, C., Knapp, F. F., Jr., Beets, A. L., Abumrad N. A., et al. (2002). The impact of overexpression and deficiency of fatty acid translocase (FAT)/CD36. Molecular and Cellular Biochemistry, 239, 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Fegley, D., Kathuria, S., Mercier, R., Li, C., Goutopoulos, A., & Makriyannis, A., et al. (2004). Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172. Proceedings of the National Academy of Sciences of the United States of America, 101, 8756–8761.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, H., Gottschlich, R., & Seelig, A. (1998). Blood–brain barrier permeation: Molecular parameters governing passive diffusion. Journal of Membrane Biology, 165, 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Freed, L. M., Wakabayashi, S., Bell, J. M., & Rapoport, S. I. (1994). Effect of inhibition of beta-oxidation on incorporation of [U- 14C]palmitate and [1-14C]arachidonate into brain lipids. Brain Research, 645, 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Gerdeman, G. L., Partridge, J. G., Lupica, C. R., & Lovinger, D. M. (2003). It could be habit forming: Drugs of abuse and striatal synaptic plasticity. Trends Neurosci, 26, 184–192.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, S. T., Abumrad, N. A., Fatade, F., Kaczocha, M., Studholme, K. M., & Deutsch, D. G. (2003). Evidence against the presence of an anandamide transporter. Proceedings of the National Academy of Sciences of the United States of America, 100, 4269–4274.

    Article  PubMed  CAS  Google Scholar 

  • Guo, W., Huang, N., Cai, J., Xie, W., & Hamilton, J. A. (2006). Fatty acid transport and metabolism in HepG2 cells. American Journal of Physiology: Gastrointestinal and Liver Physiology, 290, G528–G534.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, J. A., Guo, W., & Kamp, F. (2002). Mechanism of cellular uptake of long-chain fatty acids: Do we need cellular proteins? Molecular and Cellular Biochemistry, 239, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, T., Buchkremer, F., Gosch, I., Hall, A. M., Bernlohr, D. A., & Stremmel, W. (2001). Mouse fatty acid transport protein 4 (FATP4): Characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene, 270, 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Herz, J. (2003). LRP: A bright beacon at the blood–brain barrier. Journal of Clinical Investigation, 112, 1483–1485.

    Article  PubMed  CAS  Google Scholar 

  • Hillard, C. J. (2000). Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins & Other Lipid Mediators, 61, 3–18.

    Article  CAS  Google Scholar 

  • Hillard, C. J., & Jarrahian, A. (2000). The movement of N-arachidonoylethanolamine (anandamide) across cellular membranes. Chemistry and Physics of Lipids, 108, 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Hui, T. Y., & Bernlohr, D. A. (1997). Fatty acid transporters in animal cells. Frontiers in Bioscience, 2, 222–231.

    Google Scholar 

  • Kamp, F., Hamilton, J. A., & Westerhoff, H. V. (1993). Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry, 32, 11074–11086.

    Article  PubMed  CAS  Google Scholar 

  • Kamp, F., Zakim, D., Zhang, F., Noy, N., & Hamilton, J. A. (1995). Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry, 34, 11928–11937.

    Article  PubMed  CAS  Google Scholar 

  • Kamp, F., Guo, W., Souto, R., Pilch, P. F., Corkey, B. E., & Hamilton, J. A. (2003). Rapid flip-flop of oleic acid across the plasma membrane of adipocytes. Journal of Biological Chemistry, 7988–7995.

  • Kehl, F., Cambj-Sapunar, L., Maier, K. G., Miyata, N., Kametani, S., Okamoto, H., et al. (2002). 20-HETE contributes to the acute fall in cerebral blood flow after subarachnoid hemorrhage in the rat. American Journal of Physiology Heart and Circulatory Physiology, 282, H1556–1565.

    PubMed  CAS  Google Scholar 

  • Kliewer, S. A., Sundseth, S. S., Jones, S. A., Brown, P. J., Wisely, G. B., Koble, C. S., et al. (1997). Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proceedings of the National Academy of Sciences of the United States of America, 94, 4318–4323.

    Article  PubMed  CAS  Google Scholar 

  • Mahley, R. W., & Huang, Y. (1999). Apolipoprotein E: From atherosclerosis to Alzheimer’s disease and beyond. Current Opinion in Lipidology, 10, 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, M. (1992). Abnormal profiles of polyunsaturated fatty acids in the brain, liver, kidney and retina of patients with peroxisomal disorders. Brain Research, 583, 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, M., Mougan, I. Roig, M., & Ballabriga, A. (1994). Blood polyunsaturated fatty acids in patients with peroxisomal disorders—A multicenter study. Lipids, 29, 273–280.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, M. (1996). Docosahexaenoic acid therapy in docosahexaenoic acid-deficient patients with disorders of peroxisomal biogenesis. Lipids, 31, S145–S152.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, M., & Vazquez, E. (1998). MRI evidence that docosahexaenoic acid ethyl ester improves myelination in generalized peroxisomal disorders. Neurology, 51, 26–32.

    PubMed  CAS  Google Scholar 

  • Montine, T. J., Milatovic, D., Gupta, R. C., Valyi-Nagy, T., Morrow, J. D., & Breyer, R. M. (2002a). Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent. Journal of Neurochemistry, 83, 463–470.

    Article  PubMed  CAS  Google Scholar 

  • Montine, T. J., Neely, M. D., Quinn, J. F., Beal, M. F., Markesbery, W. R., Roberts, L. J., et al. (2002b). Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radical Biology & Medicine, 33, 620–626.

    Article  CAS  Google Scholar 

  • Morell, P., & Toews, A. D. (1996). Biochemistry of Lipids. In Moser, H. W. (Ed.), Handbook of Clinical Neurology, Vol. 22 (66): Neurodystrophies and Neurolipidoses (pp. 33–49). Amsterdam: Elsevier.

    Google Scholar 

  • Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Wilson, R. S., et al. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Archives of Neurology, 60, 940–946.

    Article  PubMed  Google Scholar 

  • Moser, H. W. (1997). Adrenoleukodystrophy: Phenotype, genetics, pathogenesis and therapy. Brain, 120, 1485–1508.

    Article  PubMed  Google Scholar 

  • Moser, H. W., Raymond, G. V., Koehler, W., Sokolowski, P., Hanefeld, F., & Korenke, G. C., et al. (2003). Evaluation of the preventive effect of glyceryl trioleate-trierucate (“Lorenzo’s oil”) therapy in X-linked adrenoleukodystrophy: Results of two concurrent trials. Advances in Experimental Medicine and Biology, 544, 369–387.

    PubMed  CAS  Google Scholar 

  • Mostofsky, D. I., Yehuda, S., & Salem, N., Jr. (2001). Fatty acids: Physiological and behavioral functions. Totowa, NJ: Humana Press, Nutrition and Health.

    Google Scholar 

  • Noronha, J. G., Bell, J. M., & Rapoport, S. I. (1990). Quantitative brain autoradiography of [9,10-3H]palmitic acid incorporation into brain lipids. Journal of Neuroscience Research, 26, 196–208.

    Article  PubMed  CAS  Google Scholar 

  • Pawlosky, R. J., Ward, G., & Salem, N., Jr. (1996). Essential fatty acid uptake and metabolism in the developing rodent brain. Lipids, 31(Suppl), S103–S107.

    Article  PubMed  CAS  Google Scholar 

  • Petroni, A., Bertagnolio, B., La Spada, P., Blasevich, M., Papini, N., & Govoni, S., et al. (1998). The beta-oxidation of arachidonic acid and the synthesis of docosahexaenoic acid are selectively and consistently altered in skin fibroblasts from three Zellweger patients versus X-adrenoleukodystrophy, Alzheimer and control subjects. Neuroscience Letters, 250, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Purdon, D., Arai, T., & Rapoport, S. (1997). No evidence for direct incorporation of esterified palmitic acid from plasma into brain lipids of awake adult rat. Journal of Lipid Research, 38, 526–530.

    PubMed  CAS  Google Scholar 

  • Rapoport, S. I. (2001). In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. Journal of Molecular Neuroscience, 16, 243–261; discussion 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, S. I., Chang, M. C., & Spector, A. A. (2001). Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. Journal of Lipid Research, 42, 678–685.

    PubMed  CAS  Google Scholar 

  • Schaffer, J. E., & Lodish, H. F. (1994). Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell, 79, 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Soderberg, M., Edlund, C., Kristensson, K., & Dallner, G. (1991). Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids, 26, 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Sprecher, H., Luthria, D. L., Mohammed, B. S., & Baykousheva, S. P. (1995). Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. Journal of Lipid Research, 36, 2471–2477.

    PubMed  CAS  Google Scholar 

  • Sprecher, H., Chen, Q., & Yin, F. Q. (1999). Regulation of the biosynthesis of 22:5n-6 and 22:6n-3: A complex intracellular process. Lipids, 34, S153–156.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, A. (2004). A current review of fatty acid transport proteins (SLC27). PfluÉgers Archiv, 447, 722–727.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, S. J., Wang, S. J., Kim, D. G., Mihalik, S. J., & Watkins, P. A. (1999a). Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochemical and Biophysical Research Communications, 257, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, S. J., Wang, S. J., McGuinness, M. C., & Watkins, P. A. (1999b). Human liver-specific very-long-chain acyl-coenzyme A synthetase: cDNA cloning and characterization of a second enzymatically active protein. Molecular Genetics and Metabolism, 68, 32–42.

    Article  PubMed  CAS  Google Scholar 

  • Stremmel, W., Strohmeyer, G., Borchard, F., Shaul, K., & Berk, P.D. (1985). Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 82, 4–8.

    Article  PubMed  CAS  Google Scholar 

  • Terracina, L., Brunetti, M., Avellini, L., De Medio, G.E., Trovarelli, G., & Gaiti, A. (1992). Arachidonic and palmitic acid utilization in aged rat brain areas. Molecular and Cellular Biochemistry, 115, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Theda, C., Moser, A. B., Powers, J. M., & Moser, H. W. (1992). Phospholipids in X-linked adrenoleukodystrophy white matter—Fatty acid abnormalities before the onset of demyelination. Journal of the Neurological Sciences, 110, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Urano, S., Sato, Y., Otonari, T., Makabe, S., Suzuki, S., Ogata, M., et al. (1998). Aging and oxidative stress in neurodegeneration. Biofactors, 7, 103–112.

    PubMed  CAS  Google Scholar 

  • Vidensky, S., Zhang, Y., Hand, T., Goellner, J., Shaffer, A., Isakson, P., et al. (2003). Neuronal overexpression of COX-2 results in dominant production of PGE2 and altered fever response. Neuromolecular Med, 3, 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, P. A., Hamilton, J. A., Leaf, A., Spector, A. A., Moore, S. A., Anderson, R. E., et al. (2001). Brain uptake and utilization of fatty acids: applications to peroxisomal biogenesis diseases. Journal of Molecular Neuroscience, 16, 87–92 (discussion 151–157).

    Article  PubMed  CAS  Google Scholar 

  • Yepes, M., Sandkvist, M., Moore, E. G., Bugge, T. H., Strickland, D. K., & Lawrence, D. A. (2003). Tissue-type plasminogen activator induces opening of the blood–brain barrier via the LDL receptor-related protein. Journal of Clinical Investigation, 112, 1533–15340.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C., & Harder, D. R. (2002). Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic Acid. Stroke, 33, 2957–2964.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Watkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, J.A., Hillard, C.J., Spector, A.A. et al. Brain Uptake and Utilization of Fatty Acids, Lipids and Lipoproteins: Application to Neurological Disorders. J Mol Neurosci 33, 2–11 (2007). https://doi.org/10.1007/s12031-007-0060-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0060-1

Keywords

Navigation