[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Inflammasome functional activities in B lymphocytes

  • Research
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Studies in animal models and human subjects have shown that, in addition to their implication in innate immunity, inflammasomes also can play a role in adaptive immunity. However, the contribution of the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome pathway to adaptive immunity remains incompletely explored. Here, we show that NLRP3 plays an important role in different facets of B cell functions, including proliferation, antibody production, and secretion of inflammatory and anti-inflammatory cytokines. When exposed to B cell receptor engagement, Toll-like receptor activation, stimulation in conditions that mimic T cell-dependent responses, or NLRP3 activation, B cells manifest disparate responses and produce different cytokine patterns critical for modulating innate and adaptive immunity, indicating that the cytokines produced serve a critical link between the early innate immune response and the delayed adaptive immunity. Importantly, genetic ablation of nlrp3 reduced the inflammasome-mediated functions of B cells. We propose that, in the absence of other cell types, the potential of B lymphocytes to respond to NLRP3 engagement enables them to initiate inflammatory cascades through recruitment of other cell subsets, such as macrophages and neutrophils. Since NLRP3 activation of B cells is not followed by pyroptosis, even in the presence of a basal caspase-1 activity, this pathway acts as a bridge that optimizes interactions between the innate and adoptive branches of the immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

Abbreviations

ASC:

Sensory protein adaptor protein

CpG:

Unmethylated cytosine guanine oligonucleotide

DAMPs:

Damage-associated molecular patterns

GC:

Germinal center

Ig:

Immunoglobuin

NLRP3:

Nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3

PAMPs:

Pathogen-associated molecular patterns

PHB:

Prohibitin (PHB)

PRRs:

Pattern recognition receptors (PRRs)

References

  1. Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296:298–300.

    Article  CAS  PubMed  Google Scholar 

  2. Farber DL, Netea MG, Radbruch A, Rajewsky K, Zinkernagel RM. Immunological memory: lessons from the past and a look to the future. Nat Rev Immunol. 2016;16:124–8.

    Article  CAS  PubMed  Google Scholar 

  3. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bruchard M, Rebe C, Derangere V, Togbe D, Ryffel B, Boidot R, Humblin E, Hamman A, Chalmin F, Berger H, Chevriaux A, Limagne E, Apetoh L, Vegran F, Ghiringhelli F. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol. 2015;16:859–70.

    Article  CAS  PubMed  Google Scholar 

  6. Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C, Dutow P, Woodruff TM, Yu ZX, O’Neill LA, Coll RC, Sher A, Leonard WJ, Kohl J, Monk P, Cooper MA, Arno M, Afzali B, Lachmann HJ, Cope AP, Mayer-Barber KD, Kemper C. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science. 2016;352:aad1210.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Martin BN, Wang C, Zhang CJ, Kang Z, Gulen MF, Zepp JA, Zhao J, Bian G, Do JS, Min B, Pavicic PG Jr., El-Sanadi C, Fox PL, Akitsu A, Iwakura Y, Sarkar A, Wewers MD, Kaiser WJ, Mocarski ES, Rothenberg ME, Hise AG, Dubyak GR, Ransohoff RM, Li X. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park SH, Ham S, Lee A, Moller A, Kim TS. NLRP3 negatively regulates Treg differentiation through Kpna2-mediated nuclear translocation. J Biol Chem. 2019;294:17951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar H, Kumagai Y, Tsuchida T, Koenig PA, Satoh T, Guo Z, Jang MH, Saitoh T, Akira S, Kawai T. Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan. J Immunol. 2009;183:8061–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ali MF, Driscoll CB, Walters PR, Limper AH, Carmona EM. Beta-glucan-activated human B lymphocytes participate in innate immune responses by releasing proinflammatory cytokines and stimulating neutrophil chemotaxis. J Immunol. 2015;195:5318–26.

    Article  CAS  PubMed  Google Scholar 

  11. Lim KH, Chen LC, Hsu K, Chang CC, Chang CY, Kao CW, Chang YF, Chang MC, Chen CG. BAFF-driven NLRP3 inflammasome activation in B cells. Cell Death Dis. 2020;11:820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leal VNC, Reis EC, Fernandes FP, Soares J, Oliveira IGC, de Souza D, Lara AN, Lopes MH, Pontillo A. Common pathogen-associated molecular patterns induce the hyper-activation of NLRP3 inflammasome in circulating B lymphocytes of HIV-infected individuals. AIDS. 2021;35:899–910.

    Article  CAS  PubMed  Google Scholar 

  13. Hsu ML, Zouali M. Inflammasome is a central player in B cell development and homing. Life Sci Alliance. 2022;6(2):e202201700. https://doi.org/10.26508/lsa.202201700.

  14. Zouali M. Swaying the advantage: multifaceted functions of inflammasomes in adaptive immunity. FEBS J. 2024. (in press)

  15. Kovarova M, Hesker PR, Jania L, Nguyen M, Snouwaert JN, Xiang Z, Lommatzsch SE, Huang MT, Ting JP, Koller BH. NLRP1-dependent pyroptosis leads to acute lung injury and morbidity in mice. J Immunol. 2012;189:2006–16.

    Article  CAS  PubMed  Google Scholar 

  16. Viau M, Longo NS, Lipsky PE, Zouali M. Staphylococcal protein a deletes B-1a and marginal zone B lymphocytes expressing human immunoglobulins: an immune evasion mechanism. J Immunol. 2005;175:7719–27.

    Article  CAS  PubMed  Google Scholar 

  17. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G. Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett. 2007;581:483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440:228–32.

    Article  CAS  PubMed  Google Scholar 

  19. Pelegrin P, Surprenant A. Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem. 2007;282:2386–94.

    Article  CAS  PubMed  Google Scholar 

  20. Falkoff RJ, Muraguchi A, Hong JX, Butler JL, Dinarello CA, Fauci AS. The effects of interleukin 1 on human B cell activation and proliferation. J Immunol. 1983;131:801–5.

    Article  CAS  PubMed  Google Scholar 

  21. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39:1003–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47:946–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–58.

    Article  CAS  PubMed  Google Scholar 

  24. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Munoz-Arias I, Greene WC. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–8.

    Article  CAS  PubMed  Google Scholar 

  26. Zouali M. Transcriptional and metabolic pre-B cell receptor-mediated checkpoints: implications for autoimmune diseases. Mol Immunol. 2014;62:315–20.

    Article  CAS  PubMed  Google Scholar 

  27. Mittrucker HW, Matsuyama T, Grossman A, Kundig TM, Potter J, Shahinian A, Wakeham A, Patterson B, Ohashi PS, Mak TW. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science. 1997;275:540–3.

    Article  CAS  PubMed  Google Scholar 

  28. Lucas CR, Cordero-Nieves HM, Erbe RS, McAlees JW, Bhatia S, Hodes RJ, Campbell KS, Sanders VM. Prohibitins and the cytoplasmic domain of CD86 cooperate to mediate CD86 signaling in B lymphocytes. J Immunol. 2013;190:723–36.

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Fan H, He P, Zhuang H, Liu X, Chen M, Zhong W, Zhang Y, Zhen C, Li Y, Jiang H, Meng T, Xu Y, Zhao G, Feng D. Prohibitin 1 regulates mtDNA release and downstream inflammatory responses. EMBO J. 2022;41:e111173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Inoue M, Williams KL, Gunn MD, Shinohara ML. NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2012;109:10480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu H, Xu R, Kong Q, Liu J, Yu Z, Zhao C. Downregulated NLRP3 and NLRP1 inflammasomes signaling pathways in the development and progression of type 1 diabetes mellitus. Biomed Pharmacother. 2017;94:619–26.

    Article  CAS  PubMed  Google Scholar 

  32. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17:588–606.

    Article  CAS  PubMed  Google Scholar 

  33. Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Nunez G, Latz E, Kastner DL, Mills KH, Masters SL, Schroder K, Cooper MA, O’Neill LA. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21:248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

MZ is supported by the China Medical University (Taichung, Taiwan) and by a Senior Jade Mountain Award (Ministry of Education, Taipei, Taiwan).

Author information

Authors and Affiliations

Authors

Contributions

MLH performed the experiments and participated in drafting the paper; KFJ performed experiments; MZ designed, supervised the experiments, and wrote the paper.

Corresponding author

Correspondence to Moncef Zouali.

Ethics declarations

Ethics approval

This study was approved by the review board from China Medical University, Taichung (Taiwan).

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, M.L., Jhuang, K.F. & Zouali, M. Inflammasome functional activities in B lymphocytes. Immunol Res 72, 828–840 (2024). https://doi.org/10.1007/s12026-024-09490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-024-09490-9

Keywords

Navigation