[go: up one dir, main page]

Skip to main content

Advertisement

Log in

STAMBP is Required for Long-Term Maintenance of Neural Progenitor Cells Derived from hESCs

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mutations in STAMBP have been well-established to cause congenital human microcephaly-capillary malformation (MIC-CAP) syndrome, a rare genetic disorder characterized by global developmental delay, severe microcephaly, capillary malformations, etc. Previous biochemical investigations and loss-of-function studies in mice have provided insights into the mechanism of STAMBP, however, it remains controversial how STAMBP deficiency leads to malformation of those affected tissues in patients. In this study, we investigated the function and underlying mechanism of STAMBP during neural differentiation of human embryonic stem cells (hESCs). We found that STAMBP is dispensable for the pluripotency maintenance or neural differentiation of hESCs. However, neural progenitor cells (NPCs) derived from STAMBP-deficient hESCs fail to be long-term maintained/expanded in vitro. We identified the anti-apoptotic protein CFLAR is down-regulated in those affected NPCs and ectopic expression of CFLAR rescues NPC defects induced by STAMBP-deficiency. Our study not only provides novel insight into the mechanism of neural defects in STAMBP mutant patients, it also indicates that the death receptor mediated apoptosis is an obstacle for long-term maintenance/expansion of NPCs in vitro thus counteracting this cell death pathway could be beneficial to the generation of NPCs in vitro.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

RNA-Seq data are available at the NCBI Gene Expression Omnibus database (GEO: GSE245689). Materials and additional details can be made available by the corresponding author upon reasonable request.

References

  1. McCullough, J., Clague, M. J., & Urbe, S. (2004). AMSH is an endosome-associated ubiquitin isopeptidase. Journal of Cell Biology, 166(4), 487–492. https://doi.org/10.1083/jcb.200401141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ishii, N., Owada, Y., Yamada, M., Miura, S., Murata, K., Asao, H., Kondo, H., & Sugamura, K. (2001). Loss of neurons in the hippocampus and cerebral cortex of AMSH-deficient mice. Molecular and Cellular Biology, 21(24), 8626–8637. https://doi.org/10.1128/MCB.21.24.8626-8637.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Suzuki, S., Tamai, K., Watanabe, M., Kyuuma, M., Ono, M., Sugamura, K., & Tanaka, N. (2011). AMSH is required to degrade ubiquitinated proteins in the central nervous system. Biochemical and Biophysical Research Communications, 408(4), 582–588. https://doi.org/10.1016/j.bbrc.2011.04.065

    Article  CAS  PubMed  Google Scholar 

  4. McDonell, L.M., Mirzaa, G.M., Alcantara, D., Schwartzentruber, J., Carter, M.T., Lee, L.J., Clericuzio, C.L., Graham, J.M., Jr., Morris-Rosendahl, D.J., Polster, T., Acsadi, G., Townshend, S., Williams, S., Halbert, A., Isidor, B., David, A., Smyser, C.D., Paciorkowski, A.R., Willing, M., . . . Boycott, K.M. (2013). Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome. Nat Genet, 45(5): 556–562. https://doi.org/10.1038/ng.2602

  5. Hori, I., Miya, F., Negishi, Y., Hattori, A., Ando, N., Boroevich, K. A., Okamoto, N., Kato, M., Tsunoda, T., Yamasaki, M., Kanemura, Y., Kosaki, K., & Saitoh, S. (2018). A novel homozygous missense mutation in the SH3-binding motif of STAMBP causing microcephaly-capillary malformation syndrome. Journal of Human Genetics, 63(9), 957–963. https://doi.org/10.1038/s10038-018-0482-3

    Article  CAS  PubMed  Google Scholar 

  6. Hu, M., Li, H., Huang, Z., Li, D., Xu, Y., Xu, Q., Chen, B., Wang, Y., Deng, J., Zhu, M., Feng, W., & Xu, X. (2022). Novel compound heterozygous mutation in STAMBP causes a neurodevelopmental disorder by disrupting cortical proliferation. Frontiers in Neuroscience, 16, 963813. https://doi.org/10.3389/fnins.2022.963813

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo, Y., Liu, Q., Mallette, E., Caba, C., Hou, F., Fux, J., LaPlante, G., Dong, A., Zhang, Q., Zheng, H., Tong, Y., & Zhang, W. (2021). Structural and functional characterization of ubiquitin variant inhibitors for the JAMM-family deubiquitinases STAMBP and STAMBPL1. Journal of Biological Chemistry, 297(4), 101107. https://doi.org/10.1016/j.jbc.2021.101107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280. https://doi.org/10.1038/nbt.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Marro, S., Patzke, C., Acuna, C., Covy, J., Xu, W., Yang, N., Danko, T., Chen, L., Wernig, M., & Sudhof, T. C. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5), 785–798. https://doi.org/10.1016/j.neuron.2013.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shan, Y., Zhang, Y., Zhao, Y., Wang, T., Zhang, J., Yao, J., Ma, N., Liang, Z., Huang, W., Huang, K., Zhang, T., Su, Z., Chen, Q., Zhu, Y., Wu, C., Zhou, T., Sun, W., Wei, Y., Zhang, C., . . . Pan, G. (2020). JMJD3 and UTX determine fidelity and lineage specification of human neural progenitor cells. Nat Commun, 11(1): 382. https://doi.org/10.1038/s41467-019-14028-x

  12. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., & Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka, N., Kaneko, K., Asao, H., Kasai, H., Endo, Y., Fujita, T., Takeshita, T., & Sugamura, K. (1999). Possible involvement of a novel STAM-associated molecule “AMSH” in intracellular signal transduction mediated by cytokines. Journal of Biological Chemistry, 274(27), 19129–19135. https://doi.org/10.1074/jbc.274.27.19129

    Article  CAS  PubMed  Google Scholar 

  14. Xu, H., Yang, X., Xuan, X., Wu, D., Zhang, J., Xu, X., Zhao, Y., Ma, C., & Li, D. (2021). STAMBP promotes lung adenocarcinoma metastasis by regulating the EGFR/MAPK signaling pathway. Neoplasia, 23(6), 607–623. https://doi.org/10.1016/j.neo.2021.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank lab members in GIBH and CityU for their kind help.

Funding

This work was partially supported by the Basic Research Project of Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBHBRP23-02) and the Science and Technology Planning Project of Guangdong Province (2023B1212060050, 2023B1212120009).

Author information

Authors and Affiliations

Authors

Contributions

X.S. and J.Z. initiated and designed the project, and wrote the manuscript. J.Z. and Y.Z. performed most experiments and analyzed results. Y.L. helped RNA-Seq analysis. T.Z. performed the karyotype analysis of KO and WT hESCs. J.H. and G.P. provided resources. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jufang He or Xiaodong Shu.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

All listed authors approved the final version of the manuscript and agree to publish this paper.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3632 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Y., Liu, Y. et al. STAMBP is Required for Long-Term Maintenance of Neural Progenitor Cells Derived from hESCs. Stem Cell Rev and Rep (2024). https://doi.org/10.1007/s12015-024-10751-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12015-024-10751-1

Keywords

Navigation