[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Establishment of a Novel In Vitro Test Setup for Electric and Magnetic Stimulation of Human Osteoblasts

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

When large defects occur, bone regeneration can be supported by bone grafting and biophysical stimuli like electric and magnetic stimulation (EMS). Clinically established EMS modes are external coils and surgical implants like an electroinductive screw system, which combines a magnetic and electric field, e.g., for the treatment of avascular bone necrosis or pseudarthrosis. For optimization of this implant system, an in vitro test setup was designed to investigate effects of EMS on human osteoblasts on different 3D scaffolds (based on calcium phosphate and collagen). Prior to the cell experiments, numerical simulations of the setup, as well as experimental validation, via measurements of the electric parameters induced by EMS were conducted. Human osteoblasts (3 × 105 cells) were seeded onto the scaffolds and cultivated. After 24 h, screw implants (Stryker ASNIS III s-series) were centered in the scaffolds, and EMS was applied (3 × 45 min per day at 20 Hz) for 3 days. Cell viability and collagen type 1 (Col1) synthesis were determined subsequently. Numerical simulation and validation showed an adequate distribution of the electric field within the scaffolds. Experimental measurements of the electric potential revealed only minimal deviation from the simulation. Cell response to stimulation varied with scaffold material and mode of stimulation. EMS-stimulated cells exhibited a significant decrease of metabolic activity in particular on collagen scaffolds. In contrast, the Col1/metabolic activity ratio was significantly increased on collagen and non-sintered calcium phosphate scaffolds after 3 days. Exclusive magnetic stimulation showed similar but nonsignificant tendencies in metabolic activity and Col1 synthesis. The cell tests demonstrate that the new test setup is a valuable tool for in vitro testing and parameter optimization of the clinically used electroinductive screw system. It combines magnetic and electric stimulation, allowing in vitro investigations of its influence on human osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wolff, J. (1892). Gesetz der Transformation der Knochen. Berlin: Verlag von August Hirschwald.

    Google Scholar 

  2. Fukada, E., & Yasuda, I. (1957). On the piezoelectric effect of bone. Journal of the Physical Society of Japan, 12, 1158–1162.

    Article  Google Scholar 

  3. Minary-Jolandan, M., & Yu, M. F. (2009). Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology, 20, 085706.

    Article  PubMed  Google Scholar 

  4. López-Duran Stern, L., & Yageya, J. (1980). Bioelectric potentials after fracture of the tibia in rats. Acta Orthopaedica Scandinavica, 51, 601–608.

    Article  PubMed  Google Scholar 

  5. Mak, A. F., & Zhang, J. D. (2001). Numerical simulation of streaming potentials due to deformation-induced hierarchical flows in cortical bone. Journal of Biomechanical Engineering, 123, 66–70.

    Article  PubMed  CAS  Google Scholar 

  6. Goodwin, C. B., Brighton, C. T., Guyer, R. D., Johnson, J. R., Light, K. I., & Yuan, H. A. (1999). A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine (Phila Pa 1976) 24:1349–1356; discussion 1357.

  7. Brighton, C. T., Black, J., Friedenberg, Z. B., Esterhai, J. L., Day, L. J., & Connolly, J. F. (1981). A multicenter study of the treatment of non-union with constant direct current. Journal of Bone and Joint Surgery. American Volume, 63(1), 2–13.

    CAS  Google Scholar 

  8. Diniz, P., Shomura, K., Soejima, K., & Ito, G. (2002). Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics, 23, 398–405.

    Article  PubMed  Google Scholar 

  9. Mittelmeier, W., Lehner, S., Kraus, W., Matter, H., Gerdesmeyer, L., & Steinhauser, E. (2004). BISS: concept and biomechanical investigations of a new screw system for electromagnetically induced internal osteostimulation. Archives of Orthopaedic and Trauma Surgery, 124, 86–91.

    Article  PubMed  CAS  Google Scholar 

  10. Griffin, M., & Bayat, A. (2011). Electrical stimulation in bone healing: critical analysis by evaluating levels of evidence. Eplasty, 11, e34.

    PubMed  PubMed Central  Google Scholar 

  11. Scott, G., & King, J. B. (1994). A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. Journal of Bone and Joint Surgery. American Volume, 76, 820–826.

    CAS  Google Scholar 

  12. Dhawan, S. K., Conti, S. F., Towers, J., Abidi, N. A., & Vogt, M. (2004). The effect of pulsed electromagnetic fields on hindfoot arthrodesis: a prospective study. Journal of Foot and Ankle Surgery, 43, 93–96.

    Article  PubMed  Google Scholar 

  13. Giannoudis, P. V., Dinopoulos, H., & Tsiridis, E. (2005). Bone substitutes: An update. Injury, 36(Suppl 3), S20–S27.

    Article  PubMed  Google Scholar 

  14. Fassina, L., Visai, L., Benazzo, F., Benedetti, L., Calligaro, A., De Angelis, M. G., et al. (2006). Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Engineering, 12, 1985–1999.

    Article  PubMed  CAS  Google Scholar 

  15. Fassina, L., Saino, E., Sbarra, M. S., Visai, L., De Angelis, M. G., Magenes, G., et al. (2010). In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite. Journal of Biomedical Materials Research A, 93, 1272–1279.

    Google Scholar 

  16. Fassina, L., Saino, E., Visai, L., Avanzini, M. A., Cusella De Angelis, M. G., Benazzo, F., et al. (2010). Use of a gelatin cryogel as biomaterial scaffold in the differentiation process of human bone marrow stromal cells. Conference of the IEEE Engineering in Medicine and Biology Society, 2010, 247–250.

    Google Scholar 

  17. Hess, R., Jaeschke, A., Neubert, H., Hintze, V., Moeller, S., Schnabelrauch, M., et al. (2012). Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs. Biomaterials, 33, 8975–8985.

    Article  PubMed  CAS  Google Scholar 

  18. Kraus, W., & Lechner, F. (1972). Die Heilung von Pseudarthrosen und Spontanfrakturen durch strukturbildende elektrodynamische Potentiale. Munch Med Wochenschr, 114, 1814–1819.

    PubMed  CAS  Google Scholar 

  19. Ascherl, R. (1976). Experimentelle Untersuchungen über den elektrischen Widerstand und Leitwert am lebenden und toten Knochengewebe unter physiologischen Bedingungen, sowie nach pathologischen Veränderungen. In:Technische Universität München, München, p 167.

  20. Ascherl, R., Lechner, F., & Blümel, G. (1985). Electrical stimulation of low frequency range in cases of pseudarthroses. Survey of 350 cases. Reconstruction Surgery and Traumatology, 19, 106–112.

    PubMed  CAS  Google Scholar 

  21. Lechner, F., & Ascherl, R. (1978). Experiences and results of the electrodynamic fields treatment in cases of pseudarthroses and delayed bone repair. Acta Orthopaedica Belgica, 44, 699–705.

    PubMed  CAS  Google Scholar 

  22. Lechner, F., Ascherl, R., & Kraus, W. (1981). Treatment of pseudarthroses with electrodynamic potentials of low frequency range. Clinical Orthopaedics and Related Research, 161, 71–81.

    PubMed  Google Scholar 

  23. Obermeier, A., Matl, F. D., Friess, W., & Stemberger, A. (2009). Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields. Bioelectromagnetics, 30, 270–279.

    Article  PubMed  Google Scholar 

  24. Leukers, B., Gülkan, H., Irsen, S. H., Milz, S., Tille, C., Schieker, M., et al. (2005). Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. Journal of Materials Science: Materials in Medicine, 16, 1121–1124.

    PubMed  CAS  Google Scholar 

  25. Teller, M., Gopp, U., Neumann, H. G., & Kühn, K. D. (2007). Release of gentamicin from bone regenerative materials: an in vitro study. Journal of Biomedical Materials Research Part B, 81, 23–29.

    Article  CAS  Google Scholar 

  26. Berridge, M., Herst, P., & Tan, A. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annual Review, 11, 127–152.

    Article  PubMed  CAS  Google Scholar 

  27. Kraus, W. (1984). Magnetic field therapy and magnetically induced electrostimulation in orthopedics. Orthopade, 13, 78–92.

    PubMed  CAS  Google Scholar 

  28. Vander Molen, M., Donahue, H., Rubin, C., & McLeod, K. (2000). Osteoblastic networks with deficient coupling: differential effects of magnetic and electric field exposure. Bone, 27, 227–231.

    Article  PubMed  CAS  Google Scholar 

  29. Bordji, K., Jouzeau, J. Y., Mainard, D., Payan, E., Netter, P., Rie, K. T., et al. (1996). Cytocompatibility of Ti–6Al–4V and Ti–5Al–2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials, 17, 929–940.

    Article  PubMed  CAS  Google Scholar 

  30. Su, Y., Souffrant, R., Klüß, D., Ellenrieder, M., Ewald, H., Mittelmeier, W., & Bader, R. (2011). Electro-Stimulating Implants for Bone Regeneration: Parameter Analysis on Design and Implant Position. In: 2011 COMSOL Conference. COMSOL, Incorporated, Stuttgart, Germany.

  31. Misakian, M., & Kaune, W. T. (1990). Optimal experimental design for in vitro studies with ELF magnetic fields. Bioelectromagnetics, 11, 251–255.

    Article  PubMed  CAS  Google Scholar 

  32. Czekanska, E. M., Stoddart, M. J., Richards, R. G., & Hayes, J. S. (2012). In search of an osteoblast cell model for in vitro research. European Cells and Materials, 24, 1–17.

    PubMed  CAS  Google Scholar 

  33. Ercan, B., & Webster, T. J. (2010). The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials, 31, 3684–3693.

    Article  PubMed  CAS  Google Scholar 

  34. Hess, R., Neubert, H., Seifert, A., Bierbaum, S., Hart, D. A., & Scharnweber, D. (2012). A novel approach for in vitro studies applying electrical fields to cell cultures by transformer-like coupling. Cell Biochemistry and Biophysics, 64, 223–232.

    Article  PubMed  CAS  Google Scholar 

  35. Lohmann, C. H., Schwartz, Z., Liu, Y., Guerkov, H., Dean, D. D., Simon, B., et al. (2000). Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. Journal of Orthopaedic Research, 18, 637–646.

    Article  PubMed  CAS  Google Scholar 

  36. Soda, A., Ikehara, T., Kinouchi, Y., & Yoshizaki, K. (2008). Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signaling pathways in osteoblast-like cells. Journal of Medical Investigation, 55, 267–278.

    Article  PubMed  Google Scholar 

  37. Cheng, G., Zhai, Y., Chen, K., Zhou, J., Han, G., Zhu, R., et al. (2011). Sinusoidal electromagnetic field stimulates rat osteoblast differentiation and maturation via activation of NO-cGMP-PKG pathway. Nitric Oxide, 25, 316–325.

    Article  PubMed  CAS  Google Scholar 

  38. Schnoke, M., & Midura, R. J. (2007). Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. Journal of Orthopaedic Research, 25, 933–940.

    Article  PubMed  CAS  Google Scholar 

  39. Berridge, M. V., Tan, A. S., McCoy, K. D., & Wang, R. (1996). The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica, 4, 14–19.

    Google Scholar 

  40. Zhou, J., Wang, J. Q., Ge, B. F., Ma, X. N., Chen, K. M., & Wei, Z. (2012). Effect of 3.6-mT sinusoidal electromagnetic fields on proliferation and differentiation of osteoblasts in vitro. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 34, 353–358.

    PubMed  CAS  Google Scholar 

  41. Zhou, J., Ming, L. G., Ge, B. F., Wang, J. Q., Zhu, R. Q., Wei, Z., et al. (2011). Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone, 49, 753–761.

    Article  PubMed  CAS  Google Scholar 

  42. Hartig, M., Joos, U., & Wiesmann, H. (2000). Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. European Biophysics Journal, 29, 499–506.

    Article  PubMed  CAS  Google Scholar 

  43. Dubey, A. K., Gupta, S. D., & Basu, B. (2011). Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 98, 18–29.

    Article  PubMed  Google Scholar 

  44. Osera, C., Fassina, L., Amadio, M., Venturini, L., Buoso, E., Magenes, G., et al. (2011). Cytoprotective response induced by electromagnetic stimulation on SH-SY5Y human neuroblastoma cell line. Tissue Engineering Part A, 17, 2573–2582.

    Article  PubMed  CAS  Google Scholar 

  45. Marie, P. J. (2009). Bone cell-matrix protein interactions. Osteoporosis International, 20, 1037–1042.

    Article  PubMed  CAS  Google Scholar 

  46. Shimizu, T., Zerwekh, J. E., Videman, T., Gill, K., Mooney, V., Holmes, R. E., et al. (1988). Bone ingrowth into porous calcium phosphate ceramics: influence of pulsing electromagnetic field. Journal of Orthopaedic Research, 6, 248–258.

    Article  PubMed  CAS  Google Scholar 

  47. Lynch, M. P., Stein, J. L., Stein, G. S., & Lian, J. B. (1995). The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Experimental Cell Research, 216, 35–45.

    Article  PubMed  CAS  Google Scholar 

  48. Salasznyk, R. M., Williams, W. A., Boskey, A., Batorsky, A., & Plopper, G. E. (2004). Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedicine and Biotechnology, 2004, 24–34.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Salasznyk, R. M., Klees, R. F., Hughlock, M. K., & Plopper, G. E. (2004). ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Communication and Adhesion, 11, 137–153.

    Article  PubMed  CAS  Google Scholar 

  50. Bodamyali, T., Bhatt, B., Hughes, F., Winrow, V., Kanczler, J., Simon, B., et al. (1998). Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochemical and Biophysical Research Communications, 250, 458–461.

    Article  PubMed  CAS  Google Scholar 

  51. Fredericks, D., Smucker, J., Petersen, E., Bobst, J., Gan, J., Simon, B., et al. (2007). Effects of direct current electrical stimulation on gene expression of osteopromotive factors in a posterolateral spinal fusion model. Spine (Phila Pa 1976), 32, 174–181.

    Article  Google Scholar 

  52. Kim, I., Song, J., Zhang, Y., Lee, T., Cho, T., Song, Y., et al. (2006). Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. Biochimica et Biophysica Acta, 1763, 907–916.

    Article  PubMed  CAS  Google Scholar 

  53. Schwartz, Z., Simon, B., Duran, M., Barabino, G., Chaudhri, R., & Boyan, B. (2008). Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. Journal of Orthopaedic Research, 26, 1250–1255.

    Article  PubMed  CAS  Google Scholar 

  54. Wang, Z., Clark, C., & Brighton, C. (2006). Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. Journal of Bone and Joint Surgery. American Volume, 88, 1053–1065.

    Article  Google Scholar 

  55. Thimm, B. W., Unger, R. E., Neumann, H. G., & Kirkpatrick, C. J. (2008). Biocompatibility studies of endothelial cells on a novel calcium phosphate/SiO2-xerogel composite for bone tissue engineering. Biomedical Materials, 3, 015007.

    Article  PubMed  Google Scholar 

  56. Aschero, G., Gizdulich, P., Mango, F., & Romano, S. M. (1996). Converse piezoelectric effect detected in fresh cow femur bone. Journal of Biomechanics, 29, 1169–1174.

    Article  PubMed  CAS  Google Scholar 

  57. Shamos, M., Lavine, L., & Shamos, M. (1963). Piezoelectric effect in bone. Nature, 197, 81.

    Article  PubMed  CAS  Google Scholar 

  58. Mak, A. F., Huang, D. T., Zhang, J. D., & Tong, P. (1997). Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity. Journal of Biomechanics, 30, 11–18.

    Article  PubMed  CAS  Google Scholar 

  59. Bistolfi, F. (2006). Evidence of interlinks between bioelectromagnetics and biomechanics: from biophysics to medical physics. Physica Medica, 22, 71–95.

    Article  PubMed  CAS  Google Scholar 

  60. Gillespie, P. G., & Walker, R. G. (2001). Molecular basis of mechanosensory transduction. Nature, 413, 194–202.

    Article  PubMed  CAS  Google Scholar 

  61. Weinbaum, S., Guo, P., & You, L. (2001). A new view of mechanotransduction and strain amplification in cells with microvilli and cell processes. Biorheology, 38, 119–142.

    PubMed  CAS  Google Scholar 

  62. Ahn, A. C., & Grodzinsky, A. J. (2009). Relevance of collagen piezoelectricity to “Wolff’s Law”: A critical review. Medical Engineering and Physics, 31, 733–741.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Manni, V., Lisi, A., Rieti, S., Serafino, A., Ledda, M., Giuliani, L., et al. (2004). Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics, 25, 118–126.

    Article  PubMed  Google Scholar 

  64. Olivares-Bañuelos, T., Navarro, L., González, A., & Drucker-Colín, R. (2004). Differentiation of chromaffin cells elicited by ELF MF modifies gene expression pattern. Cell Biology International, 28, 273–279.

    Article  PubMed  Google Scholar 

  65. Wiesmann, H., Hartig, M., Stratmann, U., Meyer, U., & Joos, U. (2001). Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochimica et Biophysica Acta, 1538, 28–37.

    Article  PubMed  CAS  Google Scholar 

  66. Collard, J. F., Lazar, C., Nowé, A., & Hinsenkamp, M. (2013). Statistical validation of the acceleration of the differentiation at the expense of the proliferation in human epidermal cells exposed to extremely low frequency electric fields. Progress in Biophysics and Molecular Biology, 111, 37–45.

    Article  PubMed  CAS  Google Scholar 

  67. Sato, K., Yamaguchi, H., Miyamoto, H., & Kinouchi, Y. (1992). Growth of human cultured cells exposed to a non-homogeneous static magnetic field generated by Sm-Co magnets. Biochimica et Biophysica Acta, 1136, 231–238.

    Article  PubMed  CAS  Google Scholar 

  68. Panagopoulos, D., Messini, N., Karabarbounis, A., Philippetis, A., & Margaritis, L. (2000). A mechanism for action of oscillating electric fields on cells. Biochemical and Biophysical Research Communications, 272, 634–640.

    Article  PubMed  CAS  Google Scholar 

  69. Panagopoulos, D., Karabarbounis, A., & Margaritis, L. (2002). Mechanism for action of electromagnetic fields on cells. Biochemical and Biophysical Research Communications, 298, 95–102.

    Article  PubMed  CAS  Google Scholar 

  70. Bassett, C., Pawluk, R., & Becker, R. (1964). Effects of electric currents on bone in vivo. Nature, 204, 652–654.

    Article  PubMed  CAS  Google Scholar 

  71. Brighton, C. T., Wang, W., Seldes, R., Zhang, G., & Pollack, S. R. (2001). Signal transduction in electrically stimulated bone cells. Journal of Bone and Joint Surgery. American Volume, 83-A, 1514–1523.

    CAS  Google Scholar 

  72. Ellenrieder, M., Tischer, T., Kreuz, P. C., Fröhlich, S., Fritsche, A., & Mittelmeier, W. (2013). Arthroscopically assisted therapy of avascular necrosis of the femoral head. Operative Orthopädie und Traumatologie, 25, 85–94.

    Article  PubMed  CAS  Google Scholar 

  73. Kraus, W., & Lechner, F. (1972). Healing of pseudoarthrosis and spontaneous fractures with structure-forming electrodynamic potentials. Munch Med Wochenschr, 114, 1814–1819.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for supporting this study within the Graduate School GRK Welisa 1505/1. We kindly thank DOT GmbH, Rostock, Germany for supplying the BONITmatrix scaffolds and the Department of Mechanical Engineering and Marine Technology, Chair of Fluid Technology and Microfluidics, University of Rostock for the fabrication of the ß-TCP scaffolds.

Disclosure

A. Krüger is an employee of Amedrix GmbH. All other authors state that there is no conflict of interest. No financial support was received from any company to perform the cell experiments and the numerical simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bader.

Additional information

P. C. Grunert and A. Jonitz-Heincke contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grunert, P.C., Jonitz-Heincke, A., Su, Y. et al. Establishment of a Novel In Vitro Test Setup for Electric and Magnetic Stimulation of Human Osteoblasts. Cell Biochem Biophys 70, 805–817 (2014). https://doi.org/10.1007/s12013-014-9984-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9984-6

Keywords

Navigation