Abstract
Endothelial cells (ECs) are the innermost layer of blood vessels that play important roles in homeostasis and vascular function. However, recent evidence suggests that the onset of inflammation and the production of reactive oxygen species impair the function of ECs and are a main factor in the development of cardiovascular disease (CVD). In this study, we investigated the effects of inflammatory markers, oxidative stress, and treatment on ECs in CVD patients. This review article is based on the material obtained from PubMed up to 2018. The key search terms used were “Cardiovascular Disease,” “Endothelial Cell Dysfunction,” “Inflammation,” “Treatment,” and “Oxidative Stress.” The generation of reactive oxygen species (ROS) as well as reduced nitric oxide (NO) production by ECs impairs the function of blood vessels. Therefore, treatment of CVD patients leads to the expression of transcription factors activating anti-oxidant mechanisms and NO production. In contrast, NO production by inflammatory agents can cause ECs repair due to differentiation of endothelial progenitor cells (EPCs). Therefore, identifying the molecular pathways leading to the differentiation of EPCs through mediation of factors induced by inflammatory factors can be effective in regenerative medicine for ECs repair.


Similar content being viewed by others
Abbreviations
- NF-kB:
-
Nuclear factor kappa-light-chain-enhancer of activated B cells
- Mo:
-
Monocyte
- EC:
-
Endothelial cell
- MQ:
-
Macrophage
- Plt:
-
Platelet
- CVD:
-
Cardiovascular disease
- HF:
-
Heart failure
- ROS:
-
Reactive oxygen species
- NO:
-
Nitric oxide
- VEGF:
-
Vascular endothelial growth factor
- LDL:
-
Low-density lipoprotein
- SCR-A:
-
Scavenger receptor-A
- ER:
-
Endoplasmic reticulum
References
Mannella, P., Simoncini, T., Caretto, M., & Genazzani, A. (2018). Dehydroepiandrosterone and cardiovascular disease. Dehydroepiandrosterone, 108, 333.
Haybar, H., Jalali, M., & Zayeri, Z. (2018). What genetic tell us about cardiovascular disease in diabetic patients. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 18(2), 147–152.
Bauer, A. J., & Martin, K. A. (2017). Coordinating regulation of gene expression in cardiovascular disease: Interactions between chromatin modifiers and transcription factors. Frontiers in Cardiovascular Medicine, 4, 19.
Goveia, J., Stapor, P., & Carmeliet, P. (2014). Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Molecular Medicine, 6(9), 1105–1120.
Siti, H. N., Kamisah, Y., & Kamsiah, J. (2015). The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular Pharmacology, 71, 40–56.
Mo, J., Yang, R., Li, F., Zhang, X., He, B., Zhang, Y., et al. (2018). Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. Phytomedicine, 42, 66–74.
Gevaert, A. B., Lemmens, K., Vrints, C. J., & Van Craenenbroeck, E. M. (2017). Targeting endothelial function to treat heart failure with preserved ejection fraction: The promise of exercise training. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2017/4865756.
Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23 suppl 1):III-I27–III-32.
Aird, W. C. (2007). Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circulation Research, 100(2), 174–190.
Djohan, A. H., Sia, C.-H., Lee, P. S., & Poh, K.-K. (2018). Endothelial progenitor cells in heart failure: An authentic expectation for potential future use and a lack of universal definition. Journal of Cardiovascular Translational Research, 11(5), 393–402.
Del Papa, N. (2018). The role of endothelial progenitors in the repair of vascular damage in systemic sclerosis. Frontiers in Immunology, 9, 1383.
Edwards, N., Langford-Smith, A. W., Wilkinson, F. L., & Alexander, M. Y. (2018). Endothelial progenitor cells: New targets for therapeutics for inflammatory conditions with high cardiovascular risk. Frontiers in Medicine, 5, 200.
Baghai, T. C., Varallo-Bedarida, G., Born, C., Häfner, S., Schüle, C., Eser, D., et al. (2018). Classical risk factors and inflammatory biomarkers: One of the missing biological links between cardiovascular disease and major depressive disorder. International Journal of Molecular Sciences, 19(6), 1740.
Miller, L. E. (2018). Methylsulfonylmethane decreases inflammatory response to tumor necrosis factor-α in cardiac cells. American Journal of Cardiovascular Disease, 8(3), 31.
Trial, J., Cieslik, K. A., & Entman, M. L. (2016). Phosphocholine-containing ligands direct CRP induction of M2 macrophage polarization independent of T cell polarization: Implication for chronic inflammatory states. Immunity, Inflammation and Disease, 4(3), 274–288.
Yin, J., Xia, W., Zhang, Y., Ding, G., Chen, L., Yang, G., et al. (2018). Role of dihydroartemisinin in regulating prostaglandin E2 synthesis cascade and inflammation in endothelial cells. Heart and Vessels, 33(11), 1411–1422.
Gomez, I., Foudi, N., Longrois, D., & Norel, X. (2013). The role of prostaglandin E2 in human vascular inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 89(2–3), 55–63.
Han, L., Dai, L., Zhao, Y.-F., Li, H.-Y., Liu, O., Lan, F., et al. (2018). CD40L promotes development of acute aortic dissection via induction of inflammation and impairment of endothelial cell function. Aging (Albany NY), 10(3), 371.
Haybar, H., & Zayeri, Z. D. (2017). The value of using polymorphisms in anti-platelet therapy. Frontiers in Biology, 12(5), 349–356.
Zeiher, A. M. (2002). CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation, 106(8), 981–986
Popa, M., Tahir, S., Elrod, J., Kim, S. H., Leuschner, F., Kessler, T., et al. (2018). Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell–platelet–monocyte interaction. Proceedings of the National Academy of Sciences of the United States of America, 115, E5556–E5565.
Wu, T., Peng, Y., Yan, S., Li, N., Chen, Y., & Lan, T. (2018). Andrographolide ameliorates atherosclerosis by suppressing pro-inflammation and ROS generation-mediated foam cell formation. Inflammation, 41(5), 1681–1689.
Zheng, L., Wu, T., Zeng, C., Li, X., Li, X., Wen, D., et al. (2016). SAP deficiency mitigated atherosclerotic lesions in ApoE−/− mice. Atherosclerosis, 244, 179–187.
Pirillo, A., Norata, G. D., & Catapano, A. L. (2013). LOX-1, OxLDL, and atherosclerosis. Mediators of Inflammation. https://doi.org/10.1155/2013/152786.
Horio, E., Kadomatsu, T., Miyata, K., Arai, Y., Hosokawa, K., Doi, Y., et al. (2014). Role of endothelial cell-derived Angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression significance. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(4), 790–800.
Cui, X.-B., Luan, J.-N., Dong, K., Chen, S., Wang, Y., Watford, W. T., et al. (2018). RGC-32 (response gene to complement 32) deficiency protects endothelial cells from inflammation and attenuates atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(4), e36–e47.
Gong, D.-M., Zhang, Y.-L., Chen, D.-Y., Hong, L.-J., Han, F., Liu, Q.-B., et al. (2018). Endothelial GPR124 exaggerates the pathogenesis of atherosclerosis by activating inflammation. Cellular Physiology and Biochemistry, 45(2), 547–557.
Hernanz, R., Martinez-Revelles, S., Palacios, R., Martin, A., Cachofeiro, V., Aguado, A., et al. (2015). Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension. British Journal of Pharmacology, 172(12), 3159–3176.
Varejckova, M., Gallardo-Vara, E., Vicen, M., Vitverova, B., Fikrova, P., Dolezelova, E., et al. (2017). Soluble endoglin modulates the pro-inflammatory mediators NF-κB and IL-6 in cultured human endothelial cells. Life Sciences, 175, 52–60.
Pawlak, K., Mysliwiec, M., & Pawlak, D. (2015). Endocan—The new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease. Clinical Biochemistry, 48(6), 425–430.
Li, X., Wang, L., Fang, P., Sun, Y., Jiang, X., Wang, H., et al. (2018). Lysophospholipids induce innate immune transdifferentiation of endothelial cells, resulting in prolonged endothelial activation. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.RA118.002752.
Taleb, A., Ahmad, K. A., Ihsan, A. U., Qu, J., Lin, N., Hezam, K., et al. (2018). Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomedicine & Pharmacotherapy, 102, 689–698.
Hu, M., Xing, C., & Song, L. (2017). Arsenite induces vascular endothelial cell dysfunction by activating IRE1a/XBP1s/HIF1a-dependent ANGII signaling. Toxicological Sciences, 160(2), 315–328.
Huang, M., Wei, R., Wang, Y., Su, T., Li, P., & Chen, X. (2018). The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biology, 16, 303–313.
Kamiński, T. W., Pawlak, K., Karbowska, M., Myśliwiec, M., & Pawlak, D. (2017). Indoxyl sulfate—The uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrology, 18(1), 35.
Chaisakul, J., Rusmili, M. R. A., Hodgson, W. C., Hatthachote, P., Suwan, K., Inchan, A., et al. (2017). A pharmacological examination of the cardiovascular effects of Malayan krait (Bungarus candidus) venoms. Toxins, 9(4), 122.
Chuaiphichai, S., Starr, A., Nandi, M., Channon, K. M., & McNeill, E. (2016). Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension. Vascular Pharmacology, 77, 69–79.
Lu, Q., Sakhatskyy, P., Grinnell, K., Newton, J., Ortiz, M., Wang, Y., et al. (2011). Cigarette smoke causes lung vascular barrier dysfunction via oxidative stress-mediated inhibition of RhoA and focal adhesion kinase. American Journal of Physiology-Lung Cellular and Molecular Physiology, 301(6), L847–L857.
Tsai, K. L., Hung, C. H., Chan, S. H., Hsieh, P. L., Ou, H. C., Cheng, Y. H., et al. (2018). Chlorogenic acid protects against oxLDL-induced oxidative damage and mitochondrial dysfunction by modulating SIRT1 in endothelial cells. Molecular Nutrition & Food Research, 62(11), 1700928.
Tsai, K.-L., Hung, C.-H., Chan, S.-H., Shih, J.-Y., Cheng, Y.-H., Tsai, Y.-J., et al. (2016). Baicalein protects against oxLDL-caused oxidative stress and inflammation by modulation of AMPK-alpha. Oncotarget, 7(45), 72458.
Du Plooy, C. S., Mels, C. M. C., Huisman, H. W., & Kruger, R. (2017). The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: The SABPA study. Hypertension Research, 40(2), 189.
Cominacini, L., Pasini, A. F., Garbin, U., Pastorino, A., Rigoni, A., Nava, C., et al. (2003). The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells. Journal of the American College of Cardiology, 41(3), 499–507.
Luo, W., Wang, Y., Yang, H., Dai, C., Hong, H., Li, J., et al. (2018). Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging, 10(7), 1722–1744.
Heine, C. L., Kolesnik, B., Schmidt, R., Werner, E. R., Mayer, B., & Gorren, A. C. (2014). Interaction between neuronal nitric-oxide synthase and tetrahydrobiopterin revisited: Studies on the nature and mechanism of tight pterin binding. Biochemistry, 53(8), 1284–1295.
Kuzuya, M., Ramos, M. A., Kanda, S., Koike, T., Asai, T., Maeda, K., et al. (2001). VEGF protects against oxidized LDL toxicity to endothelial cells by an intracellular glutathione-dependent mechanism through the KDR receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(5), 765–770.
Minhajat, R., Nilasari, D., & Bakri, S. (2015). The role of endothelial progenitor cell in cardiovascular disease risk factors. Acta Medica Indonesiana, 47(4), 340–347.
Xu, J., Liu, X., Jiang, Y., Chu, L., Hao, H., Liua, Z., et al. (2008). MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. Journal of Cellular and Molecular Medicine, 12(6a), 2395–2406.
Wang, S., Miao, J., Qu, M., Yang, G.-Y., & Shen, L. (2017). Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway. Biochemical and Biophysical Research Communications, 493(1), 64–70.
Huynh, D. N., Bessi, V. L., Ménard, L., Piquereau, J., Proulx, C., Febbraio, M., et al. (2017). Adiponectin has a pivotal role in the cardioprotective effect of CP-3 (iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice. The FASEB Journal, 32(2), 807–818.
Kotla, S., & Rao, G. N. (2015). Reactive oxygen species (ROS) Mediate p300-dependent STAT1 protein interaction with peroxisome proliferator-activated receptor (PPAR)-γ in CD36 protein expression and foam cell formation. Journal of Biological Chemistry, 290(51), 30306–30320.
Yang, X., Yao, H., Chen, Y., Sun, L., Li, Y., Ma, X., et al. (2015). Inhibition of glutathione production induces macrophage CD36 expression and enhances cellular oxLDL uptake. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M115.654582.
Sun, H.-J., Xu, D.-Y., Sun, Y.-X., Xue, T., Zhang, C.-X., Zhang, Z.-X., et al. (2017). CO-releasing molecules-2 attenuates ox-LDL-induced injury in HUVECs by ameliorating mitochondrial function and inhibiting Wnt/β-catenin pathway. Biochemical and Biophysical Research Communications, 490(3), 629–635.
Zhang, G.-Q., Tao, Y.-K., Bai, Y.-P., Yan, S.-T., & Zhao, S.-P. (2018). Inhibitory effects of simvastatin on oxidized low-density lipoprotein-induced endoplasmic reticulum stress and apoptosis in vascular endothelial cells. Chinese Medical Journal, 131(8), 950.
Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.
Ceolotto, G., Giannella, A., Albiero, M., Kuppusamy, M., Radu, C., Simioni, P., et al. (2017). miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovascular Research, 113(13), 1627–1638.
Yang, S., Mi, X., Chen, Y., Feng, C., Hou, Z., Hui, R., et al. (2018). MicroRNA-216a induces endothelial senescence and inflammation via Smad3/IκBα pathway. Journal of Cellular and Molecular Medicine, 22(5), 2739–2749.
Chen, T., Gao, F., Feng, S., Yang, T., & Chen, M. (2015). MicroRNA-370 inhibits the progression of non-small cell lung cancer by downregulating oncogene TRAF4. Oncology Reports, 34(1), 461–468.
Tang, F., Yang, T.-L., Zhang, Z., Li, X.-G., Zhong, Q.-Q., Zhao, T.-T., et al. (2017). MicroRNA-21 suppresses ox-LDL-induced human aortic endothelial cells injuries in atherosclerosis through enhancement of autophagic flux: Involvement in promotion of lysosomal function. Experimental Cell Research, 359(2), 374–383.
Yang, S., Li, J., Chen, Y., Zhang, S., Feng, C., Hou, Z., et al. (2018) MicroRNA-216a promotes M1 macrophages polarization and atherosclerosis progression by activating telomerase via the Smad3/NF-κB pathway. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. https://doi.org/10.1016/j.bbadis.2018.06.016.
Chen, Z., Wang, K., Huang, J., Zheng, G., Lv, Y., Luo, N., et al. (2018). Upregulated serum MiR-146b serves as a biomarker for acute ischemic stroke. Cellular Physiology and Biochemistry, 45(1), 397–405.
Li, C., Li, S., Zhang, F., Wu, M., Liang, H., Song, J., et al. (2018). Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE−/− mice. Biochemical and Biophysical Research Communications, 495(2), 1922–1929.
Liu, H., Wu, H., Wang, W., Zhao, Z., Liu, X., & Wang, L. (2017). Regulation of miR-92a on vascular endothelial aging via mediating Nrf2-KEAP1-ARE signal pathway. European Review for Medical and Pharmacological Sciences, 21(11), 2734–2742.
Liu, G., Li, Y., & Gao, X. (2016). microRNA-181a is upregulated in human atherosclerosis plaques and involves in the oxidative stress-induced endothelial cell dysfunction through direct targeting Bcl-2. European Review for Medical and Pharmacological Sciences, 20(14), 3092–3100.
Wang, L., Yuan, Y., Li, J., Ren, H., Cai, Q., Chen, X., et al. (2015). MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network. Cell Stress and Chaperones, 20(3), 411–420.
Tabuchi, T., Satoh, M., Itoh, T., & Nakamura, M. (2012). MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: Effect of statins on SIRT1 and microRNA-34a expression. Clinical Science, 123(3), 161–171.
Li, Y., Wang, K., Feng, Y., Fan, C., Wang, F., Yan, J., et al. (2014). Novel role of silent information regulator 1 in acute endothelial cell oxidative stress injury. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(11), 2246–2256.
Guan, X., Wang, L., Liu, Z., Guo, X., Jiang, Y., Lu, Y., et al. (2016). miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. Journal of Molecular and Cellular Cardiology, 99, 207–217.
Jensen, H. A., & Mehta, J. L. (2016). Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Review of Cardiovascular Therapy, 14(9), 1021–1033.
Niture, S. K., Khatri, R., & Jaiswal, A. K. (2014). Regulation of Nrf2—An update. Free Radical Biology and Medicine, 66, 36–44.
Mao, H., Tao, T., Wang, X., Liu, M., Song, D., Liu, X., et al. (2018). Zedoarondiol attenuates endothelial cells injury induced by oxidized low-density lipoprotein via Nrf2 activation. Cellular Physiology and Biochemistry, 48(4), 1468–1479.
Lin, X.-P., Cui, H.-J., Yang, A.-L., Luo, J.-K., & Tang, T. (2018). Astragaloside IV improves vasodilatation function by regulating the PI3K/Akt/eNOS signaling pathway in rat aorta endothelial cells. Journal of Vascular Research, 55, 169–176.
Yang, L., Liu, J., & Qi, G. (2017). Mechanism of the effect of saikosaponin on atherosclerosis in vitro is based on the MAPK signaling pathway. Molecular Medicine Reports, 16(6), 8868–8874.
Kang, S. J., Lee, Y. J., Kang, S. G., Cho, S., Yoon, W., Lim, J. H., et al. (2017). Caspase-4 is essential for saikosaponin a-induced apoptosis acting upstream of caspase-2 and γ-H2AX in colon cancer cells. Oncotarget, 8(59), 100433.
Lou, L., Zhou, J., Liu, Y., Wei, Y., Zhao, J., Deng, J., et al. (2016). Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways. Experimental and Therapeutic Medicine, 11(5), 2054–2060.
Huang, D.-Y., Li, H.-X., Zhang, L.-N., Lv, Y.-H., Cui, H.-D., & Zheng, J.-H. (2010). Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 400(1), 151–156.
Parmar, K. M., Nambudiri, V., Dai, G., Larman, H. B., Gimbrone, M. A., & García-Cardeña, G. (2005). Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. Journal of Biological Chemistry, 280(29), 26714–26719.
Lapchak, P. A. (2007). The phenylpropanoid micronutrient chlorogenic acid improves clinical rating scores in rabbits following multiple infarct ischemic strokes: Synergism with tissue plasminogen activator. Experimental Neurology, 205(2), 407–413.
Ju, W.-Z., Zhao, Y., Liu, F., Wu, T., Zhang, J., Liu, S.-J., et al. (2015). Clinical tolerability and pharmacokinetics of Erigerontis hydroxybenzene injection: Results of a randomized phase I study in healthy Chinese volunteers. Phytomedicine, 22(2), 319–325.
Xing, S.-S., Li, J., Chen, L., Yang, Y.-F., He, P.-L., Li, J., et al. (2018). Salidroside attenuates endothelial cellular senescence via decreasing the expression of inflammatory cytokines and increasing the expression of SIRT3. Mechanisms of Ageing and Development, 175, 1–6.
Li, H., Sze, S., Tong, Y., & Ng, T. (2009). Production of Th1-and Th2-dependent cytokines induced by the Chinese medicine herb, Rhodiola algida, on human peripheral blood monocytes. Journal of Ethnopharmacology, 123(2), 257–266.
Wang, M., Jin, X., Ren, X., Zhu, Y., Liu, Z., & Gao, X. (2015). Comparative in vitro dissolution of two commercially available Er-Zhi-Wan herbal medicinal products. Indian Journal of Pharmaceutical Sciences, 77(4), 391.
Jing, C., Guo, M., Bao, X., Li, T., Lin, J., Lu, X., et al. (2017). Pitavastatin up-regulates enos production by suppressing mir-155 expression in lipopolysaccharide-stimulated human umbilical vein endothelial cells. Cardiovascular Therapeutics, 35(5), e12282.
Tsujimoto, A., Takemura, G., Mikami, A., Aoyama, T., Ohno, T., Maruyama, R., et al. (2006). A therapeutic dose of the lipophilic statin pitavastatin enhances oxidant-induced apoptosis in human vascular smooth muscle cells. Journal of Cardiovascular Pharmacology, 48(4), 160–165.
Jiang, P., Mukthavavam, R., Chao, Y., Bharati, I. S., Fogal, V., Pastorino, S., et al. (2014). Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. Journal of Translational Medicine, 12(1), 13.
Zhang, J.-J., Zhang, Y.-Z., Peng, J.-J., Li, N.-S., Xiong, X.-M., Ma, Q.-L., et al. (2018). Atorvastatin exerts inhibitory effect on endothelial senescence in hyperlipidemic rats through a mechanism involving down-regulation of miR-21-5p/203a-3p. Mechanisms of Ageing and Development, 169, 10–18.
Woodcock, J., & Khan, M. A. (2014). FDA analysis of atorvastatin products refutes report of methyl ester impurities. Therapeutic Innovation & Regulatory Science, 48(5), 554–556.
Alvarez, E., Rodiño-Janeiro, B. K., Ucieda-Somoza, R., & González-Juanatey, J. R. (2010). Pravastatin counteracts angiotensin II-induced upregulation and activation of NADPH oxidase at plasma membrane of human endothelial cells. Journal of Cardiovascular Pharmacology, 55(2), 203–212.
Nemoto, S., Taguchi, K., Matsumoto, T., Kamata, K., & Kobayashi, T. (2012). Pravastatin normalizes ET-1-induced contraction in the aorta of type 2 diabetic OLETF rats by suppressing the KSR1/ERK complex. American Journal of Physiology-Heart and Circulatory Physiology, 303(7), H893–H902.
Hu, M., Cheung, B. M., & Tomlinson, B. (2012). Safety of statins: An update. Therapeutic Advances in Drug Safety, 3(3), 133–144.
Li, R., Xiang, C., Zhang, X., Guo, A., & Ye, M. (2010). Chemical analysis of the Chinese herbal medicine turmeric (Curcuma longa L.). Current Pharmaceutical Analysis, 6(4), 256–268.
Zhao, J., Yang, P., Li, F., Tao, L., Ding, H., Rui, Y., et al. (2012). Therapeutic effects of astragaloside IV on myocardial injuries: Multi-target identification and network analysis. PLoS ONE, 7(9), e44938.
Singh, H., Shelat, A. A., Singh, A., Boulos, N., Williams, R. T., & Guy, R. K. (2014). A screening-based approach to circumvent tumor microenvironment-driven intrinsic resistance to BCR-ABL + inhibitors in Ph + acute lymphoblastic leukemia. Journal of Biomolecular Screening, 19(1), 158–167.
Wang, J., Qi, H., Zhang, X., Si, W., Xu, F., Hou, T., et al. (2018). Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting β-catenin signaling. Biomedicine & Pharmacotherapy, 108, 724–733.
Pereira, C. A., Carneiro, F. S., Matsumoto, T., & Tostes, R. C. (2018). Bonus effects of anti-diabetic drugs: Possible beneficial effects on endothelial dysfunction, vascular inflammation and atherosclerosis. Basic & Clinical Pharmacology & Toxicology. https://doi.org/10.1111/bcpt.13054
Zhu, Z., Fu, C., Li, X., Song, Y., Li, C., Zou, M., et al. (2011). Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation. PLoS ONE, 6(8), e23554.
Alexandru, N., Andrei, E., Dragan, E., & Georgescu, A. (2015). Interaction of platelets with endothelial progenitor cells in the experimental atherosclerosis: Role of transplanted endothelial progenitor cells and platelet microparticles. Biology of the Cell, 107(6), 189–204.
Alexandru, N., Popov, D., Dragan, E., Andrei, E., & Georgescu, A. (2013). Circulating endothelial progenitor cell and platelet microparticle impact on platelet activation in hypertension associated with hypercholesterolemia. PLoS ONE, 8(1), e52058.
Acknowledgements
We wish to thank all our colleagues in Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.
Author information
Authors and Affiliations
Contributions
NS conceived the manuscript and revised it. HH, SS, HR, and RS wrote the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Research Involving Human Participants and/or Animals
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Handling Editor: Atsushi Sugiyama.
Rights and permissions
About this article
Cite this article
Haybar, H., Shahrabi, S., Rezaeeyan, H. et al. Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease. Cardiovasc Toxicol 19, 13–22 (2019). https://doi.org/10.1007/s12012-018-9493-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12012-018-9493-8