[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Exploring the Role of Gut Microbiome in Colon Cancer

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dysbiosis of the gut microbiome has been associated with the development of colorectal cancer (CRC). Gut microbiota is involved in the metabolic transformations of dietary components into oncometabolites and tumor-suppressive metabolites that in turn affect CRC development. In a healthy colon, the major of microbial metabolism is saccharolytic fermentation pathways. The alpha-bug hypothesis suggested that oncogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) induce the development of CRC through direct interactions with colonic epithelial cells and alterations of microbiota composition at the colorectal site. Escherichia coli, E. faecalis, F. nucleatum, and Streptococcus gallolyticus showed higher abundance whereas Bifidobacterium, Clostridium, Faecalibacterium, and Roseburia showed reduced abundance in CRC patients. The alterations of gut microbiota may be used as potential therapeutic approaches to prevent or treat CRC. Probiotics such as Lactobacillus and Bifidobacterium inhibit the growth of CRC through inhibiting inflammation and angiogenesis and enhancing the function of the intestinal barrier through the secretion of short-chain fatty acids (SCFAs). Crosstalk between lifestyle, host genetics, and gut microbiota is well documented in the prevention and treatment of CRC. Future studies are required to understand the interaction between gut microbiota and host to the influence and prevention of CRC. However, a better understanding of bacterial dysbiosis in the heterogeneity of CRC tumors should also be considered. Metatranscriptomic and metaproteomic studies are considered a powerful omic tool to understand the anti-cancer properties of certain bacterial strains. The clinical benefits of probiotics in the CRC context remain to be determined. Metagenomic approaches along with metabolomics and immunology will open a new avenue for the treatment of CRC shortly. Dietary interventions may be suitable to modulate the growth of beneficial microbiota in the gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data and materials will be freely available in PubMed.

References

  1. Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M., & Relman, D. A. (2012). The application of ecological theory toward an understanding of the human microbiome. Science, 336, 1255–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wieczorska, K., Stolarek, M., & Stec, R. (2020). The role of the gut microbiome in colorectal cancer: where are we? Where are we going? Clinical Colorectal Cancer, 19(1), 5–12.

    Article  PubMed  Google Scholar 

  3. Dzutsev, A., Goldszmid, R. S., Viaud, S., Zitvogel, L., & Trinchieri, G. (2015). The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. European Journal of Immunology, 45(1), 17–31.

    Article  CAS  PubMed  Google Scholar 

  4. Schwabe, R. F., & Jobin, C. (2013). The microbiome and cancer. Nature Reviews. Cancer, 13(11), 800–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rubinstein, M. R., Wang, X., Liu, W., Hao, Y., Cai, G., & Han, Y. W. (2013). Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host & Microbe, 14, 195–206.

    Article  CAS  Google Scholar 

  6. Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90, 859–904.

    Article  CAS  PubMed  Google Scholar 

  7. Moskal, A., Freisling, H., et al. (2016). Main nutrient patterns and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition study. British Journal of Cancer, 115(11), 1430–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi, C. R., Bakir, I. A., Hart, A. L., & Graham, T. A. (2017). Clonal evolution of colorectal cancer in IBD. Nature Reviews. Gastroenterology & Hepatology, 14, 218–229.

    Article  Google Scholar 

  9. Bultman, S. J. (2017). Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Molecular Nutrition & Food Research, 61(1), 10.

    Article  Google Scholar 

  10. Gao, R., Gao, Z., Huang, L., & Qin, H. (2017). Gut microbiota and colorectal cancer. European Journal of Clinical Microbiology & Infectious Diseases, 36(5), 757–769.

    Article  CAS  Google Scholar 

  11. Tjalsma, H., Boleij, A., Marchesi, J. R., & Dutilh, B. E. (2012). A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nature Reviews. Microbiology, 10(8), 575–582.

    Article  CAS  PubMed  Google Scholar 

  12. Saus, E., Iraola-Guzmán, S., Willis, J. R., Brunet-Vega, A., & Gabaldón, T. (2019). Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Molecular Aspects of Medicine, 69, 93–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ambalam, P., Raman, M., Purama, R. K., & Doble, M. (2016). Probiotics, prebiotics and colorectal cancer prevention. Best Practice & Research. Clinical Gastroenterology, 30(1), 119–131.

    Article  Google Scholar 

  14. Albenberg, L., Esipova, T. V., Judge, C. P., Bittinger, K., Chen, J., Laughlin, A., Grunberg, S., Baldassano, R. N., Lewis, J. D., Li, H., Thom, S. R., Bushman, F. D., Vinogradov, S. A., & Wu, G. D. (2014). Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology, 147, 1055–1063.e8.

    Article  PubMed  Google Scholar 

  15. Tomazetto, G., Hahnke, S., Wibberg, D., Pühler, A., Klocke, M., & Schlüter, A. (2018). Proteiniphilum saccharofermentans str. M3/6T isolated from a laboratory biogas reactor is versatile in polysaccharide and oligopeptide utilization as deduced from genome-based metabolic reconstructions. Biotechnology Reports (Amsterdam, Netherlands), 18, e00254.

    Google Scholar 

  16. Kahouli, I., Tomaro-Duchesneau, C., & Prakash, S. (2013). Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. Journal of Medical Microbiology, 62(8), 1107–1123.

    Article  CAS  PubMed  Google Scholar 

  17. Liang, D., Leung, R. K., Guan, W., & Au, W. W. (2018). Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathogens, 10(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Peterson, D. A., Frank, D. N., Pace, N. R., & Gordon, J. I. (2008). Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host & Microbe, 3, 417–427.

    Article  CAS  Google Scholar 

  19. Owyang, C., & Wu, G. D. (2014). The gut microbiome in health and disease. Gastroenterology, 146, 1433–1436.

    Article  PubMed  Google Scholar 

  20. Van Raay, T., & Allen-Vercoe, E. (2017). Microbial interactions and interventions in colorectal cancer. Microbiology Spectrum, 5(3), 10.

    Google Scholar 

  21. Goubet, A. G., Daillere, R., Routy, B., et al. (2018). The impact of the intestinal microbiota in therapeutic responses against cancer. Comptes Rendus Biologies, 341, 284–289.

    Article  PubMed  Google Scholar 

  22. Bevins, C. L., & Salzman, N. H. (2011). Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews. Microbiology, 9(5), 356–368.

    Article  CAS  PubMed  Google Scholar 

  23. Wu, G. D., Chen, J., Hoffmann, C., et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, Y., & Jobin, C. (2017). Novel insights into microbiome in colitis and colorectal cancer. Current Opinion in Gastroenterology, 33(6), 422–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Plotnikoff, G. A. (2014). Three measurable and modifiable enteric microbial biotransformations relevant to cancer prevention and treatment. Global Advances in Health and Medicine, 3(3), 33–43.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chang, P. V., Hao, L., Offermanns, S., & Medzhitov, R. (2014). The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 111(6), 2247–2252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Macfarlane, G. T., & Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. Journal of AOAC International, 95(1), 50–60.

    Article  CAS  PubMed  Google Scholar 

  28. Calmels, S., Ohshima, H., Vincent, P., Gounot, A. M., & Bartsch, H. (1985). Screening of microorganisms for nitrosation catalysis at pH 7 and kinetic studies on nitrosamine formation from secondary amines by E. coli strains. Carcinogenesis, 6, 911–915.

    Article  CAS  PubMed  Google Scholar 

  29. Sabit, H., Cevik, E., & Tombuloglu, H. (2019). Colorectal cancer: the epigenetic role of microbiome. World Journal of Clinical Cases, 7(22), 3683–3697.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cui, H., Cai, Y., Wang, L., et al. (2018). Berberine regulates Treg/Th17 balance to treat ulcerative colitis through modulating the gut microbiota in the colon. Frontiers in Pharmacology, 9, 571.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Khare, S., Cerda, S., Wali, R. K., et al. (2003). Ursodeoxycholic acid inhibits Ras mutations, wild-type Ras activation, and cyclooxygenase-2 expression in colon cancer. Cancer Research, 63(13), 3517–3523.

    CAS  PubMed  Google Scholar 

  32. Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110, 9066–9071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sears, C. L., & Pardoll, D. M. (2011). Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. The Journal of Infectious Diseases, 203(3), 306–311.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Attene-Ramos, M. S., Wagner, E. D., Plewa, M. J., & Gaskins, H. R. (2006). Evidence that hydrogen sulfide is a genotoxic agent. Molecular Cancer Research, 4(1), 9–14.

    Article  CAS  PubMed  Google Scholar 

  35. Gao, Z., Guo, B., Gao, R., Zhu, Q., & Qin, H. (2015). Microbiota disbiosis is associated with colorectal cancer. Frontiers in Microbiology, 6, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gao, R., Kong, C., Huang, L., Li, H., Qu, X., Liu, Z., Lan, P., Wang, J., & Qin, H. (2017). Mucosa-associated microbiota signature in colorectal cancer. European Journal of Clinical Microbiology & Infectious Diseases, 36, 2073–2083.

    Article  CAS  Google Scholar 

  37. DuPont, H. L. (2009). Clinical practice. Bacterial diarrhea. The New England Journal of Medicine, 361, 1560–1569.

    Article  CAS  PubMed  Google Scholar 

  38. Buc, E., Dubois, D., Sauvanet, P., Raisch, J., Delmas, J., Darfeuille-Michaud, A., Pezet, D., & Bonnet, R. (2013). High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One, 8(2), e56964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sasada, T., Hinoi, T., Saito, Y., Adachi, T., Takakura, Y., Kawaguchi, Y., Sotomaru, Y., Sentani, K., Oue, N., Yasui, W., & Ohdan, H. (2015). Chlorinated water modulates the development of colorectal tumors with chromosomal instability and gut microbiota in Apc-deficient mice. PLoS One, 10(7), e0132435.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L., Lan, Z., Zhang, D., Xia, H., Xu, X., Jie, Z., Su, L., Li, X., Li, X., Li, J., Xiao, L., Huber-Schönauer, U., Niederseer, D., Xu, X., al-Aama, J. Y., Yang, H., Wang, J., Kristiansen, K., Arumugam, M., Tilg, H., Datz, C., & Wang, J. (2015). Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nature Communications, 6(1), 6528.

    Article  CAS  PubMed  Google Scholar 

  41. Yu, J., Feng, Q., Wong, S. H., Zhang, D., Liang, Q. Y., Qin, Y., Tang, L., Zhao, H., Stenvang, J., Li, Y., Wang, X., Xu, X., Chen, N., Wu, W. K. K., al-Aama, J., Nielsen, H. J., Kiilerich, P., Jensen, B. A. H., Yau, T. O., Lan, Z., Jia, H., Li, J., Xiao, L., Lam, T. Y. T., Ng, S. C., Cheng, A. S. L., Wong, V. W. S., Chan, F. K. L., Xu, X., Yang, H., Madsen, L., Datz, C., Tilg, H., Wang, J., Brünner, N., Kristiansen, K., Arumugam, M., Sung, J. J. Y., & Wang, J. (2017a). Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut., 66(1), 70–78.

    Article  CAS  PubMed  Google Scholar 

  42. Liang, Q., Chiu, J., Chen, Y., Huang, Y., Higashimori, A., Fang, J., Brim, H., Ashktorab, H., Ng, S. C., Ng, S. S. M., et al. (2017). Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clinical Cancer Research, 23, 2061–2070.

    Article  CAS  PubMed  Google Scholar 

  43. Tsoi, H., Chu, E. S. H., Zhang, X., Sheng, J., Nakatsu, G., Ng, S. C., Chan, A. W. H., Chan, F. K. L., Sung, J. J. Y., & Yu, J. (2017). Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology, 152, 1419–1433.e5.

    Article  PubMed  Google Scholar 

  44. Dejea, C. M., & Sears, C. L. (2016). Do biofilms confer a pro-carcinogenic state? Gut Microbes, 7(1), 54–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65, 87–108.

    Google Scholar 

  46. Fleming, M., Ravula, S., Tatishchev, S. F., & Wang, H. L. (2012). Colorectal carcinoma: pathologic aspects. Journal of Gastrointestinal Oncology, 3, 153–173.

    PubMed  PubMed Central  Google Scholar 

  47. Soler, A. P., Miller, R. D., Laughlin, K. V., Carp, N. Z., Klurfeld, D. M., & Mullin, J. M. (1999). Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis, 20, 1425–1431.

    Article  CAS  PubMed  Google Scholar 

  48. Grivennikov, S., Karin, E., Terzic, J., et al. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 15, 103–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, Y., Wang, X., Huycke, T., Moore, D. R., Lightfoot, S. A., & Huycke, M. M. (2013). Colon macrophages polarized by commensal bacteria cause colitis and cancer through the bystander effect. Translational Oncology, 6, 596–606.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kostic, A. D., Chun, E., Robertson, L., et al. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe, 14, 207–215.

    Article  CAS  Google Scholar 

  51. Dai, Z., Zhang, J., Wu, Q., Chen, J., Liu, J., Wang, L., Chen, C., Xu, J., Zhang, H., Shi, C., Li, Z., Fang, H., Lin, C., Tang, D., & Wang, D. (2019). The role of microbiota in the development of colorectal cancer. International Journal of Cancer, 145(8), 2032–2041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bashir, A., Miskeen, A. Y., Bhat, A., Fazili, K. M., & Ganai, B. A. (2015). Fusobacterium nucleatum: an emerging bug in colorectal tumorigenesis. European Journal of Cancer Prevention, 24(5), 373–385.

    Article  CAS  PubMed  Google Scholar 

  53. Cuevas-Ramos, G., Petit, C. R., Marcq, I., Boury, M., Oswald, E., & Nougayrede, J. P. (2010). Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11537–11542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Choi, H. J., Kim, J., Do, K. H., Park, S. H., & Moon, Y. (2013). Enteropathogenic Escherichia coli-induced macrophage inhibitory cytokine 1mediates cancer cell survival: an in vitro implication of infection-linked tumor dissemination. Oncogene., 32(41), 4960–4969.

    Article  CAS  PubMed  Google Scholar 

  55. Boleij, A., Dutilh, B. E., Kortman, G. A., Roelofs, R., Laarakkers, C. M., Engelke, U. F., & Tjalsma, H. (2012). Bacterial responses to a simulated colon tumor microenvironment. Molecular & Cellular Proteomics, 11(10), 851–862.

    Article  CAS  Google Scholar 

  56. Papastergiou, V., Karatapanis, S., & Georgopoulos, S. D. (2016). Helicobacter pylori and colorectal neoplasia: is there a causal link? World Journal of Gastroenterology, 22, 649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dahmus, J. D., Kotler, D. L., Kastenberg, D. M., & Kistler, C. A. (2018). The gut microbiome and colorectal cancer: a review of bacterial pathogenesis. Journal of Gastrointestinal Oncology, 9(4), 769–777.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Irrazábal, T., Belcheva, A., Girardin, S. E., Martin, A., & Philpott, D. J. (2014). The multifaceted role of the intestinal microbiota in colon cancer. Molecular Cell, 54(2), 309–320.

    Article  PubMed  Google Scholar 

  59. Liu, T., Song, X., Khan, S., Li, Y., Guo, Z., Li, C., Wang, S., Dong, W., Liu, W., Wang, B., & Cao, H. (2020). The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: an old story, yet mesmerizing. International Journal of Cancer, 146(7), 1780–1790.

    Article  CAS  PubMed  Google Scholar 

  60. Merchant, B. N., Rogers, C. M., Trivedi, B., Morrow, J., & Coffey, R. J. (2005). Ligand-dependent activation of the epidermal growth factor receptor by secondary bile acids in polarizing colon cancer cells. Surgery, 138(3), 415–421.

    Article  PubMed  Google Scholar 

  61. Attene-Ramos, M. S., Wagner, E. D., Gaskins, H. R., & Plewa, M. J. (2007). Hydrogen sulfide induces direct radical-associated DNA damage. Molecular Cancer Research, 5(5), 455–459.

    Article  CAS  PubMed  Google Scholar 

  62. Culpepper, T., Ukhanova, M., Wang, X., Sun, Y., & Mai, V. (2014). Associations between diet, gut microbiota and markers of CRC risk. Cancer & Metabolism., 2, 2049–3002.

    Article  Google Scholar 

  63. Centuori, S. M., & Martinez, J. D. (2014). Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Digestive Diseases and Sciences, 59(10), 2367–2380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kong, Y., Bai, P. S., Sun, H., Nan, K. J., Chen, N. Z., & Qi, X. G. (2012). The deoxycholic acid targets miRNA-dependent CAC1 gene expression in multidrug resistance of human colorectal cancer. The International Journal of Biochemistry & Cell Biology, 44(12), 2321–2233.

    Article  CAS  Google Scholar 

  65. Ocvirk, S., & O’Keefe, S. J. (2017). Influence of bile acids on colorectal cancer risk: potential mechanisms mediated by diet - gut microbiota interactions. Current Nutrition Reports, 6(4), 315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zou, S., Fang, L., & Lee, M. H. (2018). Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterology Report (Oxford), 6(1), 1–12.

    Article  Google Scholar 

  67. Wallace, B. D., Wang, H., Lane, K. T., Scott, J. E., Orans, J., Koo, J. S., Venkatesh, M., Jobin, C., Yeh, L. A., Mani, S., & Redinbo, M. R. (2010). Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science., 330, 831–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnson, C. H., Dejea, C. M., Edler, D., Hoang, L. T., Santidrian, A. F., Felding, B. H., Ivanisevic, J., Cho, K., Wick, E. C., Hechenbleikner, E. M., Uritboonthai, W., Goetz, L., Casero Jr., R. A., Pardoll, D. M., White, J. R., Patti, G. J., Sears, C. L., & Siuzdak, G. (2015). Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metabolism, 21, 891–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, S., Rhee, K.-J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H.-R., Huso, D. L., Brancati, F. L., Wick, E., McAllister, F., Housseau, F., Pardoll, D. M., & Sears, C. L. (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Medicine, 15, 1016–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goodwin, A. C., Destefano Shields, C. E., Wu, S., Huso, D. L., Wu, X., Murray-Stewart, T. R., Hacker-Prietz, A., Rabizadeh, S., Woster, P. M., Sears, C. L., & Casero, R. A. (2011). Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proceedings. National Academy of Sciences. United States of America, 108(37), 15354–15359.

    Article  CAS  Google Scholar 

  71. Wu, S., Morin, P. J., Maouyo, D., & Sears, C. L. (2003). Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology., 124, 392–400.

    Article  CAS  PubMed  Google Scholar 

  72. Thiele Orberg, E., Fan, H., Tam, A. J., et al. (2017). The myeloid immune signature of enterotoxigenic Bacterioides fragilis-induced murine colon tumorigenesis. Mucosal Immunology, 10, 421–433.

    Article  CAS  PubMed  Google Scholar 

  73. Geis, A., Fan, H., Wu, X., et al. (2015). Regulatory T-cell response to enterotoxigenic Bacterioides fragilis colonization triggers IL-17-dependent colon carcinogenesis. Cancer Discovery, 5(10), 1098–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ridlon, J. M., Kang, D. J., Hylemon, P. B., & Bajaj, J. S. (2014). Bile acids and the gut microbiome. Current Opinion in Gastroenterology, 30, 332–338.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Castellarin, M., Warren, R. L., Freeman, J. D., et al. (2012). Fusobacterium nucleatum is prevalent in human colorectal carcinoma. Genome Research, 22, 299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tahara, T., Yamamoto, E., Suzuki, H., Maruyama, R., Chung, W., Garriga, J., Jelinek, J., Yamano, H. O., Sugai, T., An, B., Shureiqi, I., Toyota, M., Kondo, Y., Estecio, M. R., & Issa, J. P. (2014). Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Research, 74(5), 1311–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nosho, K., Sukawa, Y., Adachi, Y., et al. (2016). Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World Journal of Gastroenterology, 22(2), 557–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saito, T., Nishikawa, H., Wada, H., Nagano, Y., Sugiyama, D., Atarashi, K., Maeda, Y., Hamaguchi, M., Ohkura, N., Sato, E., et al. (2016). Two foxp3(+)cd4(+) t cell subpopulations distinctly control the prognosis of colorectal cancers. Nature Medicine, 22, 679–684.

    Article  CAS  PubMed  Google Scholar 

  79. Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., Qian, Y., Kryczek, I., Sun, D., Nagarsheth, N., et al. (2017b). Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 170, 548–563.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cougnoux, A., Dalmasso, G., Martinez, R., Buc, E., Delmas, J., Gibold, L., Sauvanet, P., Darcha, C., Dechelotte, P., Bonnet, M., Pezet, D., Wodrich, H., Darfeuille-Michaud, A., & Bonnet, R. (2014). Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut., 63(12), 1932–1942.

    Article  CAS  PubMed  Google Scholar 

  81. Fais, T., Delmas, J., Cougnoux, A., et al. (2016). Targeting colorectal cancer-associated bacteria: a new area of research for personalized treatments. Gut Microbes, 7(4), 329–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guidi, R., Guerra, L., Levi, L., Stenerlow, B., Fox, J. G., Josenhans, C., Masucci, M. G., & Frisan, T. (2013). Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cellular Microbiology, 15(1), 98–113.

    Article  CAS  PubMed  Google Scholar 

  83. Ge, Z., Schauer, D. B., & Fox, J. G. (2008). In vivo virulence properties of bacterial cytolethal-distending toxin. Cellular Microbiology, 10, 1599–1607.

    Article  CAS  PubMed  Google Scholar 

  84. Boleij, A., & Tjalsma, H. (2012). Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biological Reviews of the Cambridge Philosophical Society, 87(3), 701–730.

    Article  PubMed  Google Scholar 

  85. Pithva, S. P., Ambalam, P. S., Ramoliya, J. M., Dave, J. M., & Vyas, B. R. (2015). Antigenotoxic and antimutagenic activities of probiotic Lactobacillus rhamnosus Vc against N-methyl-N’-nitro-N-nitrosoguanidine. Nutrition and Cancer, 67(7), 1142–1150.

    Article  CAS  PubMed  Google Scholar 

  86. Lin, C., Cai, X., Zhang, J., Wang, W., Sheng, Q., Hua, H., Zhou, X. (2019). Role of gut microbiota in the development and treatment of colorectal cancer. Digestion, 100(1), 72–78. https://doi.org/10.1159/000494052.

  87. Bozkurt, H.S., Quigley, E.M., Kara, B. (2019). Bifidobacterium animalis subspecies lactis engineered to produce mycosporin-like amino acids in colorectal cancer prevention. SAGE Open Medecine, 7, 2050312119825784. https://doi.org/10.1177/2050312119825784.

  88. Sivan, A., Corrales, L., Hubert, N., et al. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science., 350(6264), 1084–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Whitehead, R. H., Young, G. P., & Bhathal, P. S. (1986). Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM1215). Gut., 27(12), 1457–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jan, G., Belzacq, A. S., Haouzi, D., Rouault, A., Métivier, D., Kroemer, G., & Brenner, C. (2002). Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death and Differentiation, 9(2), 179–188.

    Article  CAS  PubMed  Google Scholar 

  91. Liu, Z., Li, C., Huang, M., Tong, C., Zhang, X., Wang, L., Peng, H., Lan, P., Zhang, P., Huang, N., Peng, J., Wu, X., Luo, Y., Qin, H., Kang, L., & Wang, J. (2015). Positive regulatory effects of perioperative probiotic treatment on postoperative liver complications after colorectal liver metastases surgery: a double-center and double-blind randomized clinical trial. BMC Gastroenterology, 15(1), 34.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhang, J. W., Du, P., Gao, J., Yang, B. R., Fang, W. J., & Ying, C. M. (2012). Preoperative probiotics decrease postoperative infectious complications of colorectal cancer. The American Journal of the Medical Sciences, 343(3), 199–205.

    Article  PubMed  Google Scholar 

  93. Ma, E. L., Choi, Y. J., Choi, J., Pothoulakis, C., Rhee, S. H., & Im, E. (2010). The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. International Journal of Cancer, 127(4), 780–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cui, Y., Liu, L., Dou, X., Wang, C., Zhang, W., Gao, K., Liu, J., & Wang, H. (2017). Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide. Oncotarget, 8, 77489–77499.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Molska, M., & Reguła, J. (2019). Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients., 11(10), 2453.

    Article  CAS  PubMed Central  Google Scholar 

  96. Filip, M., Tzaneva, V., & Dumitrascu, D. L. (2018). Fecal transplantation: digestive and extra-digestive clinical applications. Clujul Medical, 91(3), 259–265.

    PubMed  PubMed Central  Google Scholar 

  97. Donohoe, D. R., Holley, D., Collins, L. B., Montgomery, S. A., Whitmore, A. C., Hillhouse, A., Curry, K. P., Renner, S. W., Greenwalt, A., Ryan, E. P., Godfrey, V., Heise, M. T., Threadgill, D. S., Han, A., Swenberg, J. A., Threadgill, D. W., & Bultman, S. J. (2014). A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discovery, 4, 1387–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. West, N. R., & Powrie, F. (2015). Immunotherapy not working? Check your microbiota. Cancer Cell, 28, 687–689.

    Article  CAS  PubMed  Google Scholar 

  99. Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., Ben-Yacov, O., Lador, D., Avnit-Sagi, T., Lotan-Pompan, M., Suez, J., Mahdi, J. A., Matot, E., Malka, G., Kosower, N., Rein, M., Zilberman-Schapira, G., Dohnalová, L., Pevsner-Fischer, M., Bikovsky, R., Halpern, Z., Elinav, E., & Segal, E. (2015). Personalized nutrition by prediction of glycemic responses. Cell., 163, 1079–1094.

    Article  CAS  PubMed  Google Scholar 

  100. Hill, C., Guarner, F., Reid, G., et al. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506–514.

    Article  Google Scholar 

  101. Raman, M., Ambalam, P., Kondepudi, K. K., Pithva, S., Kothari, C., Patel, A. T., Purama, R. K., Dave, J. M., & Vyas, B. R. M. (2013). Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes, 4(3), 181–192.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Forsythe, P., & Bienenstock, J. (2010). Immunomodulation by commensal and probiotic bacteria. Immunological Investigations, 39(4-5), 429–448.

    Article  CAS  PubMed  Google Scholar 

  103. Fink, L. N., Zeuthen, L. H., Christensen, H. R., Morandi, B., Frøkiaer, H., & Ferlazzo, G. (2007). Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses. International Immunology, 19(12), 1319–1327.

    Article  CAS  PubMed  Google Scholar 

  104. Uccello, M., Malaguarnera, G., Basile, F., et al. (2012). Potential role of probiotics on colorectal cancer prevention. BMC Surgery, 12 Suppl 1(Suppl 1), S35.

    Article  PubMed  Google Scholar 

  105. Chen, Z.-F., Ai, L.-Y., Wang, J.-L., Ren, L.-L., Yu, Y.-N., Xu, J., Chen, H.-Y., Yu, J., Li, M., Qin, W.-X., Ma, X., Shen, N., Chen, Y.-X., Hong, J., & Fang, J.-Y. (2015). Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiology, 10, 1433–1445.

    Article  PubMed  Google Scholar 

  106. Konishi, H., Fujiya, M., Tanaka, H., Ueno, N., Moriichi, K., Sasajima, J., Ikuta, K., Akutsu, H., Tanabe, H., & Kohgo, Y. (2016). Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nature Communications, 7, 12365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gamallat, Y., Meyiah, A., Kuugbee, E. D., et al. (2016). Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomedicine & Pharmacotherapy, 83, 536–541.

    Article  CAS  Google Scholar 

  108. Ohkawara, S., Furuya, H., Nagashima, K., Asanuma, N., & Hino, T. (2005). Oral administration of butyrivibrio fibrisolvens, a butyrate-producing bacterium, decreases the formation of aberrant crypt foci in the colon and rectum of mice. The Journal of Nutrition, 135, 2878–2883.

    Article  CAS  PubMed  Google Scholar 

  109. Rossi, O., van Berkel, L. A., Chain, F., Tanweer Khan, M., Taverne, N., Sokol, H., Duncan, S. H., Flint, H. J., Harmsen, H. J., Langella, P., Samsom, J. N., & Wells, J. M. (2016). Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Scientific Reports, 6, 18507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Quévrain, E., Maubert, M. A., Michon, C., et al. (2016). Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut., 65(3), 415–425.

    Article  PubMed  Google Scholar 

  111. Jeppsson, B., Mangell, P., & Thorlacius, H. (2011). Use of probiotics as prophylaxis for postoperative infections. Nutrients., 3(5), 604–612.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gianotti, L., Morelli, L., Galbiati, F., Rocchetti, S., Coppola, S., Beneduce, A., Gilardini, C., Zonenschain, D., Nespoli, A., & Braga, M. (2010). A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World Journal of Gastroenterology, 16(2), 167–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Guslandi, M., Mezzi, G., Sorghi, M., & Testoni, P. A. (2000). Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Digestive Diseases and Sciences, 45(7), 1462–1464.

    Article  CAS  PubMed  Google Scholar 

  114. Iyer, C., Kosters, A., Sethi, G., Kunnumakkara, A. B., Aggarwal, B. B., & Versalovic, J. (2008). Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kappaB and MAPK signalling. Cellular Microbiology, 10(7), 1442–1452.

    Article  CAS  PubMed  Google Scholar 

  115. Otte, J. M., Mahjurian-Namari, R., Brand, S., Werner, I., Schmidt, W. E., & Schmitz, F. (2009). Probiotics regulate the expression of COX-2 in intestinal epithelial cells. Nutrition and Cancer, 61(1), 103–113.

    Article  CAS  PubMed  Google Scholar 

  116. Baricault, L., Denariaz, G., Houri, J. J., Bouley, C., Sapin, C., & Trugnan, G. (1995). Use of HT-29, a cultured human colon cancer cell line, to study the effect of fermented milks on colon cancer cell growth and differentiation. Carcinogenesis., 16(2), 245–252.

    Article  CAS  PubMed  Google Scholar 

  117. Grimoud, J., Durand, H., de Souza, S., Monsan, P., Ouarné, F., Theodorou, V., & Roques, C. (2010). In vitro screening of probiotics and synbiotics according to anti-inflammatory and anti-proliferative effects. International Journal of Food Microbiology, 144(1), 42–50.

    Article  CAS  PubMed  Google Scholar 

  118. Rafter, J., Bennett, M., Caderni, G., Clune, Y., Hughes, R., Karlsson, P. C., Klinder, A., O’Riordan, M., O’Sullivan, G. C., Pool-Zobel, B., Rechkemmer, G., Roller, M., Rowland, I., Salvadori, M., Thijs, H., Van Loo, J., Watzl, B., & Collins, J. K. (2007). Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. The American Journal of Clinical Nutrition, 85(2), 488–496.

    Article  CAS  PubMed  Google Scholar 

  119. Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D., & Rossi, M. (2007). Folate production by bifidobacterial as a potential probiotic property. Applied and Environmental Microbiology, 73(1), 179–185.

    Article  CAS  PubMed  Google Scholar 

  120. Wasson, G. R., McGlynn, A. P., McNulty, H., O’Reilly, S. L., McKelvey-Martin, V. J., McKerr, G., Strain, J. J., Scott, J., & Downes, C. S. (2006). Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation. The Journal of Nutrition, 136(11), 2748–2753.

    Article  CAS  PubMed  Google Scholar 

  121. Tilg, H., Adolph, T. E., Gerner, R. R., & Moschen, A. R. (2018). The intestinal microbiota in colorectal cancer. Cancer Cell, 33(6), 954–964.

    Article  CAS  PubMed  Google Scholar 

  122. Arthur, J. C., Gharaibeh, R. Z., Uronis, J. M., Perez-Chanona, E., Sha, W., Tomkovich, S., Muhlbauer, M., Fodor, A. A., & Jobin, C. (2013). VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Scientific Reports, 3, 2868.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Roller, M., Clune, Y., Collins, K., Rechkemmer, G., & Watzl, B. (2007). Consumption of prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis has minor effects on selected immune parameters in polypectomised and colon cancer patients. The British Journal of Nutrition, 97(4), 676–684.

    Article  CAS  PubMed  Google Scholar 

  124. Kahouli, I., Malhotra, M., Alaoui-Jamali, M. A., & Prakash, S. (2015). In-vitro characterization of the anti-cancer activity of the probiotic bacterium Lactobacillus fermentum NCIMB 5221 and potential against colorectal cancer cells. Journal of Cancer Science and Therapy, 7, 224–235.

    CAS  Google Scholar 

  125. Hatakka, K., Holma, R., El-Nezami, H., et al. (2008). The influence of Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS on potentially carcinogenic bacterial activity in human colon. International Journal of Food Microbiology, 128(2), 406–410.

    Article  CAS  PubMed  Google Scholar 

  126. Wong, S. H., & Yu, J. (2019). Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews. Gastroenterology & Hepatology, 16(11), 690–704.

    Article  CAS  Google Scholar 

  127. Reis, S. A. D., da Conceição, L. L., & Peluzio, M. D. C. G. (2019). Intestinal microbiota and colorectal cancer: changes in the intestinal microenvironment and their relation to the disease. Journal of Medical Microbiology, 68(10), 1391–1407.

    Article  PubMed  Google Scholar 

  128. Mehta, R. S., Nishihara, R., Cao, Y., Song, M., Mima, K., Qian, Z. R., Nowak, J. A., Kosumi, K., Hamada, T., Masugi, Y., et al. (2017). Dietary patterns and risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncology, 3, 921–927.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Jia, W., Xie, G., & Jia, W. (2018). Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews. Gastroenterology & Hepatology, 15(2), 111–128.

    Article  CAS  Google Scholar 

  130. Zeng, H., Umar, S., Rust, B., Lazarova, D., & Bordonaro, M. (2019). Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. International Journal of Molecular Sciences, 20(5), 1214.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

AIIMS Intramural funding to SK; DBT & SERB funding to IC

Author information

Authors and Affiliations

Authors

Contributions

IC and SK drafted the manuscript. RD, AS, KP, TS, and RS assisted with references and critical reading. JS helped with clinical input. SK has overseen the entire work.

Corresponding author

Correspondence to Subhradip Karmakar.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Ethics Approval

Ethical approval is not required since this a review article.

Consent to Participate

Not applicable as no human subjects were enrolled in this study

Consent for Publication

Yes

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, I., Dhar, R., Pethusamy, K. et al. Exploring the Role of Gut Microbiome in Colon Cancer. Appl Biochem Biotechnol 193, 1780–1799 (2021). https://doi.org/10.1007/s12010-021-03498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03498-9

Keywords