[go: up one dir, main page]

Skip to main content
Log in

Complex Coacervation as a Novel Microencapsulation Technique to Improve Viability of Probiotics Under Different Stresses

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A physicochemical approach has been undertaken to develop polymeric microcapsules for delivering probiotic bacteria with improved viability in functional food products. Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3 % w/v) and gum arabic (GA, 3 % w/v) solutions mixed at 2:1 weight ratio. The viability of the bacterial cells during processing (heat treatment and high salt concentrations), under simulated gut conditions (low pH and high bile concentrations) and upon storage, was evaluated. Entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73 %; log scale), especially in comparison with non-encapsulated (free) cells (<19 %). Moreover, after 60 days of refrigerated storage at pH 4.0, the viability of microencapsulated cells was more than 86 %, implying improved protection in comparison with the free cells (<59 %). Complex coacervation with WPI/GA has the potential to deliver live probiotics in low pH foods or fermented products; it is also important to note that the complexes can dissolve at pH 7.0 (gut environment) releasing the microbial cells (desired feature of target delivery systems).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science and Technology, 18(5), 240–251.

    Article  CAS  Google Scholar 

  • Annan, N. T., Borza, A. D., & Hansen, L. T. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Research International, 41(2), 184–193.

    Article  CAS  Google Scholar 

  • Beaulieu, L., Savoie, L., Paquin, P., & Subirade, M. (2002). Elaboration and characterization of whey protein beads by an emulsification/cold gelation process: application for the protection of retinol. Biomacromolecules, 3(2), 239–248.

    Article  CAS  Google Scholar 

  • Bolin, Z., Libudzisz, Z., & Moneta, J. (1997). Survival ability of Lactobacillus acidophilus as probiotic adjunct in low-pH environments. Polish Journal of Food and Nutrition Sciences, 6, 71–78.

    CAS  Google Scholar 

  • Capela, P., Hay, T. K. C., & Shah, N. P. (2007). Effect of homogenisation on bead size and survival of encapsulated probiotic bacteria. Food Research International, 40(10), 1261–1269.

    Article  CAS  Google Scholar 

  • Champagne, C. P., Ross, P. R., Saarela, M., Hansen, K. F., & Charalampopoulos, D. (2011). Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices. International Journal of Food Microbiology, 149(3), 185–193.

    Article  Google Scholar 

  • Chou, L. S., & Weimer, B. (1999). Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. Journal of Dairy Science, 82(1), 23–31.

    Article  CAS  Google Scholar 

  • Cook, M. T., Tzortzis, G., Charalampopoulos, D., & Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162(1), 56–67.

    Article  CAS  Google Scholar 

  • Corbo, M. R., Bevilacqua, A., & Sinigaglia, M. (2011). Shelf life of alginate beads containing lactobacilli and bifidobacteria: characterization of microspheres containing Lactobacillus delbrueckii subsp. bulgaricus. International Journal of Food Science and Technology, 46(10), 2212–2217.

    Article  CAS  Google Scholar 

  • De Castro-Cislaghi, F. P., Silva, C. R. E., Fritzen-Freire, C. B., Lorenz, J. G., & Sant’Anna, E. S. (2012). Bifidobacterium Bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. Journal of Food Engineering, 113(2), 186–193.

    Article  Google Scholar 

  • Dinakar, P., & Mistry, V. (1994). Growth and viability of Bifidobacterium bifidum in cheddar cheese. Journal of Dairy Science, 77(10), 2854–2864.

    Article  CAS  Google Scholar 

  • Ding, W. K., & Shah, N. P. (2007). Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. Journal of Food Science, 72(9), 1750–3841.

    Article  Google Scholar 

  • Doherty, S. B., Gee, V. L., Ross, R. P., Stanton, C., Fitzgerald, G. F., & Brodkorb, A. (2010). Efficacy of whey protein gel networks as potential viability-enhancing scaffolds for cell immobilization of Lactobacillus rhamnosus GG. Journal of Microbiological Methods, 80(3), 231–241.

    Article  CAS  Google Scholar 

  • Doherty, S. B., Gee, V. L., Ross, R. P., Stanton, C., Fitzgerald, G. F., & Brodkorb, A. (2011). Development and characterization of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocolloids, 25(6), 1604–1617.

    Article  CAS  Google Scholar 

  • Ducel, V., Richard, J., Saulnier, P., Popineau, Y., & Boury, F. (2004). Evidence and characterization of complex coacervates containing plant proteins: application to the microencapsulation of oil droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 232(2–3), 239–247.

    Article  CAS  Google Scholar 

  • Foegeding, E. A., & Luck, P. J. (2002). Whey protein products. In J. Roginski, J. W. Fuquay, & P. F. Fox (Eds.), Encyclopedia of dairy sciences. Amsterdam: Academic Press.

    Google Scholar 

  • Gbassi, G. K., Vandamme, T., Ennahar, S., & Marchioni, E. (2009). Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. International Journal of Food Microbiology, 129(1), 103–105.

    Article  CAS  Google Scholar 

  • Gebara, C., Chaves, K. S., Ribeiro, M. C. E., Souza, F. N., Grosso, C. R. F., & Gigante, M. L. (2013). Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Research International, 51(2), 872–878.

    Article  CAS  Google Scholar 

  • Gerez, C. L., de Valdez, G. F., Gigante, M. L., & Grosso, C. R. F. (2012). Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Letters in Applied Microbiology, 54(6), 552–556.

    Article  CAS  Google Scholar 

  • Girard, M., Turgeon, S. L., & Gauthier, S. F. (2003). Thermodynamic parameters of β-lactoglobulin−pectin complexes assessed by isothermal titration calorimetry. Journal of Agricultural and Food Chemistry, 51(15), 4450–4455.

    Article  CAS  Google Scholar 

  • Goin, S. (2004). Microencapsulation: industrial appraisal of existing technologies. Food Science and Technology, 15, 330–347.

    Article  Google Scholar 

  • Gomes, A. M. P., Teixeira, M. G. M., & Malcata, F. X. (1998). Viability of Bifidobacterium animalis and Lactobacillus acidophilus in milk: sodium chloride concentration and storage temperature. Journal of Food Processing Preservation, 22, 221–240.

    Article  Google Scholar 

  • Haque, T., Chen, H., Ouyang, W., Martoni, C., Lawuyi, B., Urbanska, A. M., et al. (2005). Superior cell delivery features of poly(ethylene glycol) incorporated alginate, chitosan, and poly-l-lysine microcapsules. Molecular Pharmaceutics, 2(1), 29–36.

    Article  CAS  Google Scholar 

  • Heidebach, T., Först, P., & Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 52(4), 291–311.

    Article  CAS  Google Scholar 

  • Huang, Y., & Adams, M. C. (2004). In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. International Journal of Food Microbiology, 91(3), 253–260.

    Article  Google Scholar 

  • Jorgensen, F., Nybroe, O., & Knochel, S. (1994). Effects of starvation and osmotic stress on viability and heat resistance of Pseudomonas fluorescens AH9. Journal of Bacteriology, 77, 340–347.

    Google Scholar 

  • Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT - Food Science and Technology, 39(10), 1221–1227.

    Article  CAS  Google Scholar 

  • Kailasapathy, K., & Chin, J. (2000). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell Biology, 78(1), 80–88.

    Article  CAS  Google Scholar 

  • Kailasapathy, K., & Sureeta, B. S. (2004). Effect of storage on shelf life and viability of freeze-dried and microencapsulated Lactobacillus acidophilus and Bifidobacterium infantis cultures. Australian Journal of Dairy Technology, 59(3), 204–208.

    Google Scholar 

  • Kinsella, J. E., & Whitehead, D. M. (1989). Proteins in whey: chemical, physical, and functional properties. Advances in Food and Nutrition Research, 33, 343–438.

    Article  CAS  Google Scholar 

  • Kuhn, K. R., Cavallieri, A. L. F., & Da Cunha, R. L. (2010). Cold-set whey protein gels induced by calcium or sodium salt addition. International Journal of Food Science and Technology, 45(2), 348–357.

    Article  CAS  Google Scholar 

  • Kuijpers, A. J., Van Wachem, P. B., Van Luyn, M. J. A., Brouwer, L. A., Engbers, G. H. M., Krijgsveld, J., et al. (2000). In vitro and in vivo evaluation of gelatin-chondroitin sulphate hydrogels for controlled release of antibacterial proteins. Biomaterials, 21(17), 1763–1772.

    Article  CAS  Google Scholar 

  • Latha, M. S., Lal, A. V., Kumary, T. V., Sreekumar, R., & Jayakrishnan, A. (2000). Progesterone release from glutaraldehyde cross-linked casein microspheres: in vitro studies and in vivo response in rabbits. Contraception, 61(5), 329–334.

    Article  CAS  Google Scholar 

  • Li, X. Y., Chen, X. G., Sun, Z. W., Park, H. J., & Cha, D.-S. (2011). Preparation of alginate/chitosan/carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393. Carbohydrate Polymers, 83(4), 1479–1485.

    Article  CAS  Google Scholar 

  • Liserre, A. M., Ré, M. I., & Franco, B. D. G. M. (2007). Microencapsulation of Bifidobacterium animalis subsp. lactis in modified alginate-chitosan beads and evaluation of survival in simulate gastrointestinal conditions. Food Biotechnology, 21, 1–16.

    Article  CAS  Google Scholar 

  • Mandal, S., Puniya, A. K., & Singh, K. (2006). Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal, 16(10), 1190–1195.

    Article  CAS  Google Scholar 

  • Millqvist-Fureby, A., Elofsson, U., & Bergenståhl, B. (2001). Surface composition of spray-dried milk protein-stabilised emulsions in relation to pre-heat treatment of proteins. Colloids and Surfaces B: Biointerfaces, 21(1–3), 47–58.

    Article  CAS  Google Scholar 

  • Moschakis, T., Murray, B. S., & Biliaderis, C. G. (2010). Modifications in stability and structure of whey protein-coated o/w emulsions by interacting chitosan and gum arabic mixed dispersions. Food Hydrocolloids, 24(1), 8–17.

    Article  CAS  Google Scholar 

  • Mosilhey, S. H. (2003). Influence of different capsule materials on the physiological properties of microencapsulated Lactobacillus acidophilus. Ph.D. Thesis University of Bonn Germany.

  • Niwa, T., Takeuchi, H., Hino, T., Nohara, M., & Kawashima, Y. (1995). Biodegradable submicron carriers for peptide drugs: preparation of dl-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate by a novel emulsion-phase separation method in an oil system. International Journal of Pharmaceutics, 121(1), 45–54.

    Article  CAS  Google Scholar 

  • O’ Riordan, K., Andrews, D., Buckle, K., & Conway, P. (2001). Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. Journal of Applied Microbiology, 91(6), 1059–1066.

    Article  Google Scholar 

  • Oliveira, A. C. (2006). Viabilidade de Lactobacillus acidophilus e Bifidobacterium lactis, microencapsulados por coacervação, seguida de secagem por spray drying e leito de jorro. Dissertação (Mestrado em Ciências Farmacêuticas), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SP.

  • Oliveira, A. C., Moretti, T. S., Boschini, C., Baliero, J. C. C., Freitas, O., & Favaro-Trindade, C. S. (2007). Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. Journal of Microencapsulation, 24(7), 685–693.

    Article  Google Scholar 

  • Overbeek, J. T. G., & Voorn, M. J. (1957). Phase separation in polyelectrolyte solutions. Theory of complex coacervation. Journal of Cellular and Comparative Physiology, 49(S1), 7–26.

    Article  CAS  Google Scholar 

  • Papanikolaou, Z., Hatzikamari, M., Georgakopoulos, P., Yiangou, M., Litopoulou-Tzanetaki, E., & Tzanetakis, N. (2012). Selection of dominant NSLAB from a mature traditional cheese according to their technological properties and in vitro intestinal challenges. Journal of Food Science, 77(5), M298–M306.

    Article  CAS  Google Scholar 

  • Pham, M., Lemberg, D. A., & Day, A. S. (2008). Probiotics: sorting the evidence from the myths. Medical Journal of Australia, 188(5), 304–308.

    Google Scholar 

  • Picot, A., & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, 14(6), 505–515.

    Article  CAS  Google Scholar 

  • Reddy, K. B. P. K., Madhu, A. N., & Prapulla, S. G. (2009). Comparative survival and evaluation of functional probiotic properties of spray-dried lactic acid bacteria. International Journal of Dairy Technology, 62(2), 240–248.

    Article  Google Scholar 

  • Reid, A. A., Champagne, C. P., Gardner, N., Fustier, P., & Vuillemard, J. C. (2007). Survival in food systems of Lactobacillus rhamnosus R011 microentrapped in whey protein gel particles. Journal of Food Science, 72, M31–M37.

    Article  CAS  Google Scholar 

  • Rodríguez-Huezo, M. E., Durán-Lugo, R., Prado-Barragán, L. A., Cruz-Sosa, F., Lobato-Calleros, C., Alvarez-Ramírez, J., et al. (2007). Pre-selection of protective colloids for enhanced viability of Bifidobacterium bifidum following spray-drying and storage, and evaluation of aguamiel as thermoprotective prebiotic. Food Research International, 40(10), 1299–1306.

    Article  Google Scholar 

  • Rosenberg, M., & Sheu, T.-Y. (1996). Microencapsulation of volatiles by spray-drying in whey protein-based wall systems. International Dairy Journal, 6(3), 273–284.

    Article  CAS  Google Scholar 

  • Rossler, B., Kreuter, J., & Scherer, D. (1995). Collagen microparticles: preparation and properties. Journal of Microencapsulation, 12(1), 49–57.

    Article  CAS  Google Scholar 

  • Sanders, M. E., & Marco, M. L. (2010). Food formats for effective delivery of probiotics. Annual Reviews in Food Science and Technology, 1, 65–85.

    Article  Google Scholar 

  • Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H. S., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2010). Textural properties of alginate-pectin beads and survivability of entrapped L. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International, 43(1), 111–117.

    Article  CAS  Google Scholar 

  • Schmitt, C., Sanchez, C., Desobry-Banon, S., & Hardy, J. (1998). Structure and technofunctional properties of protein-polysaccharide complexes: a review. Critical Reviews in Food Science and Nutrition, 38(8), 689–753.

    Article  CAS  Google Scholar 

  • Schmitt, C., Sanchez, C., & Thomas, F. (1999). Complex coacervation between beta-lactoglobulin and acacia gum in aqueous medium. Food Hydrocolloids, 13(6), 483–496.

    Article  CAS  Google Scholar 

  • Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43(1), 193–202.

    Article  CAS  Google Scholar 

  • Souza, F. N., Gebara, C., Ribeiro, M. C. E., Chaves, K. S., Gigante, M. L., & Grosso, C. R. F. (2012). Production and characterization of microparticles containing pectin and whey proteins. Food Research International, 49(1), 560–566.

    Article  CAS  Google Scholar 

  • Su, L.-C., Lin, C.-W., & Chen, M.-J. (2007). Development of an oriental-style dairy product coagulated by microcapsules containing probiotics and filtrates from fermented rice. International Journal of Dairy Technology, 60(1), 49–54.

    Article  Google Scholar 

  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., & Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, 62(1–2), 47–55.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, Y.-W., Ruengruglikit, C., & Huang, Q. (2007). Effects of salt concentration on formation and dissociation of β-lactoglobulin/pectin complexes. Journal of Agricultural and Food Chemistry, 55(25), 10432–10436.

    Article  CAS  Google Scholar 

  • Weinbreck, F., de Vries, R., Schrooyen, P., & de Kruif, C. G. (2003). Complex coacervation of whey proteins and gum arabic. Biomacromolecules, 4(2), 293–303.

    Article  CAS  Google Scholar 

  • Weinbreck, F., Rollema, H. S., Tromp, R. H., & de Kruif, C. G. (2004a). Diffusivity of whey protein and gum arabic in their coacervates. Langmuir, 20(15), 6389–6395.

    Article  CAS  Google Scholar 

  • Weinbreck, F., Tromp, R. H., & de Kruif, C. G. (2004b). Composition and structure of whey protein/gum arabic coacervates. Biomacromolecules, 5(4), 1437–1445.

    Article  CAS  Google Scholar 

  • Yeo, Y., Bellas, E., Firestone, W., Langer, R., & Kohane, D. S. (2005). Complex coacervates for thermally sensitive controlled release of flavor compounds. Journal of Agricultural and Food Chemistry, 53(19), 7518–7525.

    Article  CAS  Google Scholar 

  • Zhao, R., Sun, J., Torley, P., Wang, D., & Niu, S. (2008). Measurement of particle diameter of Lactobacillus acidophilus microcapsule by spray drying and analysis on its microstructure. World Journal of Microbiology and Biotechnology, 24(8), 1349–1354.

    Article  Google Scholar 

Download references

Acknowledgments

This research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program “Education and Lifelong Learning” (Action’s Beneficiary: General Secretariat for Research and Technology) and is co-financed by the European Social Fund (ESF) and the Greek State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas G. Biliaderis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosnea, L.A., Moschakis, T. & Biliaderis, C.G. Complex Coacervation as a Novel Microencapsulation Technique to Improve Viability of Probiotics Under Different Stresses. Food Bioprocess Technol 7, 2767–2781 (2014). https://doi.org/10.1007/s11947-014-1317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1317-7

Keywords

Navigation