[go: up one dir, main page]

Skip to main content

Advertisement

Log in

The Role of Inflammation in Depression and Beyond: A Primer for Clinicians

  • REVIEW
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of review

We evaluate available evidence for the role of inflammation in depression. We reappraise literature involving systemic inflammation, neuroinflammation and neurotransmission and their association with depression. We review the connection between depression, autoimmunity and infectious diseases. We revise anti-inflammatory treatments used in depression.

Recent Findings

Peripheral inflammatory markers are present in a subset of patients with depression and can alter common neurotransmitters in this population but there is no clear causality between depression and systemic inflammation. Infectious conditions and autoimmune illnesses do not have a clear correlation with depression. Certain medications have positive evidence as adjunctive treatments in depression but studies are heterogenic, hence they are sparsely used in clinical settings.

Summary

The current evidence does not fully support inflammation, infections or autoimmunity as possible etiologies of depression. The available studies have numerous confounders that obscure the findings. Anti-inflammatory agents may have potential for treatment of depression, but further research is needed to clarify their usefulness in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. World Health Organization (WHO). Depressive Disorder (Depression). World Health Organization. 2023. www.who.int/news-room/fact-sheets/detail/depression

  2. Centers for Disease Control and Prevention (CDC). Suicide data and statistics. Suicide prevention. 2024. www.cdc.gov/suicide/suicide-data-statistics.html

  3. Walker ER, McGee RE, Druss BG. Mortality in Mental Disorders and Global Disease Burden Implications: A Systematic Review and Meta-analysis. JAMA Psychiat. 2015;72(4):334–41.

    Article  Google Scholar 

  4. Li Z, Ruan M, Chen J, Fang Y. Major Depressive Disorder: Advances in Neuroscience Research and Translational Applications. Neurosci Bull. 2021;37(6):863–80.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bergfeld IO, Mantione M, Figee M, Schuurman PR, Lok A, Denys D. Treatment-resistant depression and suicidality. J Affect Disord. 2018;235:362–7.

    Article  PubMed  CAS  Google Scholar 

  6. Serafini G, Parisi VM, Aguglia A, Amerio A, Sampogna G, Fiorillo A, et al. A Specific Inflammatory Profile Underlying Suicide Risk? Systematic Review of the Main Literature Findings. Int J Environ Res Public Health. 2020;17(7):2393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Konsman JP. Inflammation and Depression: A Nervous Plea for Psychiatry to Not Become Immune to Interpretation. Pharmaceuticals (Basel). 2019;12(1):29.

    Article  PubMed  CAS  Google Scholar 

  8. Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, et al. A guiding map for inflammation. Nat Immunol. 2017;18(8):826–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Beurel E, Toups M, Nemeroff CB. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron. 2020;107(2):234–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Estes ML, McAllister AK. Alterations in immune cells and mediators in the brain: it’s not always neuroinflammation! Brain Pathol. 2014;24(6):623–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rosenblat JD, McIntyre RS. Bipolar Disorder and Inflammation. Psychiatr Clin North Am. 2016;39(1):125–37.

    Article  PubMed  Google Scholar 

  13. Raison CL, Rook GW, Miller AH, Begay TK. Role of Inflammation in Psychiatric Disease. In: Zigmond MJ, Rowland LP, Coyle JT, editors. Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders. USA: Academic Press; 2015.

    Google Scholar 

  14. Serafini G, Adavastro G, Canepa G, Capobianco L, Conigliaro C, Pittaluga F, et al. Abnormalities in Kynurenine Pathway Metabolism in Treatment-Resistant Depression and Suicidality: A Systematic Review. CNS Neurol Disord Drug Targets. 2017;16(4):440–53.

    Article  PubMed  CAS  Google Scholar 

  15. Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40.

    Article  PubMed  Google Scholar 

  16. Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L, et al. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiatry. 2009;66(3):287–92.

    Article  PubMed  CAS  Google Scholar 

  17. Black C, Miller BJ. Meta-Analysis of Cytokines and Chemokines in Suicidality: Distinguishing Suicidal Versus Nonsuicidal Patients. Biol Psychiatry. 2015;78(1):28–37.

    Article  PubMed  CAS  Google Scholar 

  18. Hidese S, Hattori K, Sasayama D, Tsumagari T, Miyakawa T, Matsumura R, Yokota Y, Ishida I, Matsuo J, Yoshida S, Ota M, Kunugi H. Cerebrospinal Fluid Inflammatory Cytokine Levels in Patients With Major Psychiatric Disorders: A Multiplex Immunoassay Study. Front Pharmacol. 2021;11:594394.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Luning Prak ET, Brooks T, Makhoul W, Beer JC, Zhao L, Girelli T, et al. No increase in inflammation in late-life major depression screened to exclude physical illness. Transl Psychiatry. 2022;12(1):118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mousten IV, Sørensen NV, Christensen RHB, Benros ME. Cerebrospinal Fluid Biomarkers in Patients With Unipolar Depression Compared With Healthy Control Individuals: A Systematic Review and Meta-analysis. JAMA Psychiat. 2022;79(6):571–81.

    Article  Google Scholar 

  21. Pandey GN, Rizavi HS, Zhang H, Bhaumik R, Ren X. Abnormal protein and mRNA expression of inflammatory cytokines in the prefrontal cortex of depressed individuals who died by suicide. J Psychiatry Neurosci. 2018;43(6):376–85.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiat. 2015;72(3):268–75.

    Article  Google Scholar 

  23. Joo YH, Lee MW, Son YD, Chang KA, Yaqub M, Kim HK, Cumming P, Kim JH. In Vivo Cerebral Translocator Protein (TSPO) Binding and Its Relationship with Blood Adiponectin Levels in Treatment-Naïve Young Adults with Major Depression: A [11C]PK11195 PET Study. Biomedicines. 2021;10(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eggerstorfer B, Kim JH, Cumming P, Lanzenberger R, Gryglewski G. Meta-analysis of molecular imaging of translocator protein in major depression. Front Mol Neurosci. 2022;15:981442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hannestad J, DellaGioia N, Gallezot JD, Lim K, Nabulsi N, Esterlis I, Pittman B, Lee JY, O’Connor KC, Pelletier D, Carson RE. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [11C]PBR28 PET study. Brain Behav Immun. 2013;33:131–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nettis MA, Veronese M, Nikkheslat N, Mariani N, Lombardo G, Sforzini L, et al. PET imaging shows no changes in TSPO brain density after IFN-α immune challenge in healthy human volunteers. Transl Psychiatry. 2020;10(1):89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Nettis MA, Pariante CM. Is there neuroinflammation in depression? Understanding the link between the brain and the peripheral immune system in depression. Int Rev Neurobiol. 2020;152:23–40.

    Article  PubMed  CAS  Google Scholar 

  28. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42(2):151–7.

    Article  PubMed  Google Scholar 

  29. Snijders GJLJ, Sneeboer MAM, Fernández-Andreu A, Udine E, Psychiatric donor program of the Netherlands Brain Bank (NBB-Psy), Boks MP, et al. Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder. Mol Psychiatry. 2021;26(7):3336–49.

    Article  PubMed  CAS  Google Scholar 

  30. Scheepstra KWF, Mizee MR, van Scheppingen J, Adelia A, Wever DD, Mason MRJ, et al. Microglia Transcriptional Profiling in Major Depressive Disorder Shows Inhibition of Cortical Gray Matter Microglia. Biol Psychiatry. 2023; 28:S0006–3223(23)01239–8. (in press)

  31. Ongür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A. 1998;95(22):13290–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45(9):1085–98.

    Article  PubMed  CAS  Google Scholar 

  33. Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001;58(6):545–53.

    Article  PubMed  CAS  Google Scholar 

  34. Bowley MP, Drevets WC, Ongür D, Price JL. Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry. 2002;52(5):404–12.

    Article  PubMed  Google Scholar 

  35. Louveau A, Harris TH, Kipnis J. Revisiting the Mechanisms of CNS Immune Privilege. Trends Immunol. 2015;36(10):569–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–9.

    Article  PubMed  CAS  Google Scholar 

  37. Schlaaff K, Dobrowolny H, Frodl T, Mawrin C, Gos T, Steiner J, et al. Increased densities of T and B lymphocytes indicate neuroinflammation in subgroups of schizophrenia and mood disorder patients. Brain Behav Immun. 2020;88:497–506.

    Article  PubMed  CAS  Google Scholar 

  38. Hussain M, Kumar P, Khan S, Gordon DK, Khan S. Similarities Between Depression and Neurodegenerative Diseases: Pathophysiology, Challenges in Diagnosis and Treatment Options. Cureus. 2020;12(11):e11613.

    PubMed  PubMed Central  Google Scholar 

  39. Szarowicz CA, Steece-Collier K, Caulfield ME. New Frontiers in Neurodegeneration and Regeneration Associated with Brain-Derived Neurotrophic Factor and the rs6265 Single Nucleotide Polymorphism. Int J Mol Sci. 2022;23(14):8011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Liu X, Kakeda S, Watanabe K, Yoshimura R, Abe O, Ide S, et al. Relationship between the cortical thickness and serum cortisol levels in drug-naive, first-episode patients with major depressive disorder: a Surface-based Morphometric Study. Depress Anxiety. 2015;32(9):702–8.

    Article  PubMed  CAS  Google Scholar 

  41. Ajilore O, Narr K, Rosenthal J, Pham D, Hamilton L, Watari K, et al. Regional cortical gray matter thickness differences associated with type 2 diabetes and major depression. Psychiatry Res. 2010;184(2):63–70.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kong L, Wu F, Tang Y, Ren L, Kong D, Liu Y, et al. Frontal-subcortical volumetric deficits in single episode, medication-naïve depressed patients and the effects of 8 weeks fluoxetine treatment: a VBM-DARTEL study. PLoS ONE. 2014;9(1):e79055.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang H, Li L, Wu M, Chen Z, Hu X, Chen Y, et al. Brain gray matter alterations in first episodes of depression: A meta-analysis of whole-brain studies. Neurosci Biobehav Rev. 2016;60:43–50.

    Article  PubMed  Google Scholar 

  44. Geerlings MI, Gerritsen L. Late-Life Depression, Hippocampal Volumes, and Hypothalamic-Pituitary-Adrenal Axis Regulation: A Systematic Review and Meta-analysis. Biol Psychiatry. 2017;82(5):339–50.

    Article  PubMed  CAS  Google Scholar 

  45. Chen Z, Peng W, Sun H, Kuang W, Li W, Jia Z, Gong Q. High-field magnetic resonance imaging of structural alterations in first-episode, drug-naive patients with major depressive disorder. Transl Psychiatry. 2016;6(11):e942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lynall ME, Turner L, Bhatti J, Cavanagh J, de Boer P, Mondelli V, et al. Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium. Peripheral Blood Cell-Stratified Subgroups of Inflamed Depression. Biol Psychiatry. 2020;88(2):185–96.

    Article  PubMed  CAS  Google Scholar 

  47. Singh D, Guest PC, Dobrowolny H, Vasilevska V, Meyer-Lotz G, Bernstein HG, et al. Changes in leukocytes and CRP in different stages of major depression. J Neuroinflammation. 2022;19(1):74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Beurel E, Medina-Rodriguez EM, Jope RS. Targeting the Adaptive Immune System in Depression: Focus on T Helper 17 Cells. Pharmacol Rev. 2022;74(2):373–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cheng Y, Wang Y, Wang X, Jiang Z, Zhu L, Fang S. Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Monocyte-to-Lymphocyte Ratio in Depression: An Updated Systematic Review and Meta-Analysis. Front Psychiatry. 2022;13:893097.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Euteneuer F, Dannehl K, Del Rey A, Engler H, Schedlowski M, Rief W. Peripheral Immune Alterations in Major Depression: The Role of Subtypes and Pathogenetic Characteristics. Front Psychiatry. 2017;8:250.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373–87.

    Article  PubMed  Google Scholar 

  52. Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord. 2013;150(3):736–44.

    Article  PubMed  CAS  Google Scholar 

  53. Frank P, Jokela M, Batty GD, Cadar D, Steptoe A, Kivimäki M. Association Between Systemic Inflammation and Individual Symptoms of Depression: A Pooled Analysis of 15 Population-Based Cohort Studies. Am J Psychiatry. 2021;178(12):1107–18.

    Article  PubMed  Google Scholar 

  54. Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman AT, Penninx BW. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry. 2013;18(6):692–9.

    Article  PubMed  CAS  Google Scholar 

  55. Dunjic-Kostic B, Ivkovic M, Radonjic NV, Petronijevic ND, Pantovic M, Damjanovic A, et al. Melancholic and atypical major depression – Connection between cytokines, psychopathology and treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:1–6.

    Article  PubMed  CAS  Google Scholar 

  56. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015;49:206–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chamberlain SR, Cavanagh J, de Boer P, Mondelli V, Jones DNC, Drevets WC, et al. Treatment-resistant depression and peripheral C-reactive protein. Br J Psychiatry. 2019;214(1):11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Achtyes E, Keaton SA, Smart L, Burmeister AR, Heilman PL, Krzyzanowski S, et al. Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain Behav Immun. 2020;83:239–47.

    Article  PubMed  CAS  Google Scholar 

  59. Scrandis DA, Langenberg P, Tonelli LH, Sheikh TM, Manogura AC, Alberico LA, et al. Prepartum Depressive Symptoms Correlate Positively with C-Reactive Protein Levels and Negatively with Tryptophan Levels: A Preliminary Report. Int J Child Health Hum Dev. 2008;1(2):167–74.

    PubMed  PubMed Central  Google Scholar 

  60. Bobińska K, Gałecka E, Szemraj J, Gałecki P, Talarowska M. Is there a link between TNF gene expression and cognitive deficits in depression? Acta Biochim Pol. 2017;64(1):65–73.

    PubMed  Google Scholar 

  61. Chang HH, Lee IH, Gean PW, Lee SY, Chi MH, Yang YK, et al. Treatment response and cognitive impairment in major depression: Association with C-reactive protein. Brain Behav Immun. 2012;26(1):90–5.

    Article  PubMed  Google Scholar 

  62. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry. 2016;21(5):642–9.

    Article  PubMed  CAS  Google Scholar 

  64. Miller GE, Cole SW. Clustering of depression and inflammation in adolescents previously exposed to childhood adversity. Biol Psychiatry. 2012;72(1):34–40.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Malik S, Singh R, Arora G, Dangol A, Goyal S. Biomarkers of Major Depressive Disorder: Knowing is Half the Battle. Clin Psychopharmacol Neurosci. 2021;19(1):12–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Macaluso M, Drevets WC, Preskorn SH. How biomarkers will change psychiatry. Part II: Biomarker selection and potential inflammatory markers of depression. J Psychiatr Pract. 2012;18(4):281–6.

    Article  PubMed  Google Scholar 

  67. Pryce CR, Fontana A. Depression in Autoimmune Diseases. Curr Top Behav Neurosci. 2017;31:139–54.

    Article  PubMed  Google Scholar 

  68. Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today. 1993;14(9):426–30.

    Article  PubMed  CAS  Google Scholar 

  69. Cremaschi L, Kardell M, Johansson V, Isgren A, Sellgren CM, Altamura AC, et al. Prevalences of autoimmune diseases in schizophrenia, bipolar I and II disorder, and controls. Psychiatry Res. 2017;258:9–14.

    Article  PubMed  Google Scholar 

  70. Andersson NW, Gustafsson LN, Okkels N, Taha F, Cole SW, Munk-Jørgensen P, et al. Depression and the risk of autoimmune disease: a nationally representative, prospective longitudinal study. Psychol Med. 2015;45(16):3559–69.

    Article  PubMed  CAS  Google Scholar 

  71. Hoffmann C, Zong S, Mané-Damas M, Molenaar P, Losen M, Martinez-Martinez P. Autoantibodies in Neuropsychiatric Disorders. Antibodies (Basel). 2016;5(2):9.

    Article  PubMed  Google Scholar 

  72. Iseme RA, McEvoy M, Kelly B, Agnew L, Attia J, Walker FR. Autoantibodies and depression: Evidence for a causal link? Neurosci Biobehav Rev. 2014;40:62–79.

    Article  PubMed  CAS  Google Scholar 

  73. Alexander JJ, Jacob A, Bao L, Macdonald RL, Quigg RJ. Complement-dependent apoptosis and inflammatory gene changes in murine lupus cerebritis. J Immunol. 2005;175(12):8312–9.

    Article  PubMed  CAS  Google Scholar 

  74. Matus S, Burgos PV, Bravo-Zehnder M, Kraft R, Porras OH, Farías P, et al. Antiribosomal-P autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis. J Exp Med. 2007;204(13):3221–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tanaka S, Matsunaga H, Kimura M, Tatsumi K, Hidaka Y, Takano T, et al. Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J Neuroimmunol. 2003;141(1–2):155–64.

    Article  PubMed  CAS  Google Scholar 

  76. Lapteva L, Nowak M, Yarboro CH, Takada K, Roebuck-Spencer T, Weickert T, et al. Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum. 2006;54(8):2505–14.

    Article  PubMed  CAS  Google Scholar 

  77. Munjal S, Ferrando SJ, Freyberg Z. Neuropsychiatric Aspects of Infectious Diseases: An Update. Crit Care Clin. 2017;33(3):681–712.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nanni MG, Caruso R, Mitchell AJ, Meggiolaro E, Grassi L. Depression in HIV infected patients: a review. Curr Psychiatry Rep. 2015;17(1):530.

    Article  PubMed  Google Scholar 

  79. Nayeri Chegeni T, Sharif M, Sarvi S, Moosazadeh M, Montazeri M, Aghayan SA, et al. Is there any association between Toxoplasma gondii infection and depression? A systematic review and meta-analysis. PLoS ONE. 2019;14(6):e0218524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kamal AM, Kamal AM, Abd El-Fatah AS, Rizk MM, Hassan EE. Latent Toxoplasmosis is Associated with Depression and Suicidal Behavior. Arch Suicide Res. 2020;9:1–12.

    Google Scholar 

  81. de Barros JLVM, Barbosa IG, Salem H, Rocha NP, Kummer A, Okusaga OO, et al. Is there any association between Toxoplasma gondii infection and bipolar disorder? A systematic review and meta-analysis. J Affect Disord. 2017;209:59–65 PRANDOVSKY 2011 instead.

    Article  PubMed  Google Scholar 

  82. Yeoh SW, Holmes ACN, Saling MM, Everall IP, Nicoll AJ. Depression, fatigue and neurocognitive deficits in chronic hepatitis C. Hepatol Int. 2018;12(4):294–304.

    Article  PubMed  Google Scholar 

  83. Burgdorf KS, Trabjerg BB, Pedersen MG, Nissen J, Banasik K, Pedersen OB, et al. Large-scale study of Toxoplasma and Cytomegalovirus shows an association between infection and serious psychiatric disorders. Brain Behav Immun. 2019;79:152–8.

    Article  PubMed  Google Scholar 

  84. Simanek AM, Meier HC. Association Between Prenatal Exposure to Maternal Infection and Offspring Mood Disorders: A Review of the Literature. Curr Probl Pediatr Adolesc Health Care. 2015;45(11):325–64.

    PubMed  Google Scholar 

  85. Gale SD, Berrett AN, Erickson LD, Brown BL, Hedges DW. Association between virus exposure and depression in US adults. Psychiatry Res. 2018;261:73–9.

    Article  PubMed  Google Scholar 

  86. Cassol E, Misra V, Morgello S, Kirk GD, Mehta SH, Gabuzda D. Altered Monoamine and Acylcarnitine Metabolites in HIV-Positive and HIV-Negative Subjects With Depression. J Acquir Immune Defic Syndr. 2015;69(1):18–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Markkula N, Lindgren M, Yolken RH, Suvisaari J. Association of exposure to Toxoplasma gondii, Epstein-Barr Virus, Herpes Simplex virus Type 1 and Cytomegalovirus with new-onset depressive and anxiety disorders: An 11-year follow-up study. Brain Behav Immun. 2020;87:238–42.

    Article  PubMed  CAS  Google Scholar 

  88. Lindgren M, Holm M, Markkula N, Härkänen T, Dickerson F, Yolken RH, et al. Exposure to common infections and risk of suicide and self-harm: a longitudinal general population study. Eur Arch Psychiatry Clin Neurosci. 2020;270(7):829–39.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Premraj L, Kannapadi NV, Briggs J, Seal SM, Battaglini D, Fanning J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci. 2022;434:120162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Grolli RE, Mingoti MED, Bertollo AG, Luzardo AR, Quevedo J, Réus GZ, et al. Impact of COVID-19 in the Mental Health in Elderly: Psychological and Biological Updates. Mol Neurobiol. 2021;58(5):1905–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kappelmann N, Dantzer R, Khandaker GM. Interleukin-6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19. Psychoneuroendocrinology. 2021;131:105295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Mazza MG, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun. 2020;89:594–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wong AC, Devason AS, Umana IC, Cox TO, Dohnalová L, Litichevskiy L, et al. Serotonin reduction in post-acute sequelae of viral infection. Cell. 2023;186(22):4851-4867.e20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bai S, Guo W, Feng Y, Deng H, Li G, Nie H, et al. Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: a systematic review and meta-analysis of randomised controlled trials. J Neurol Neurosurg Psychiatry. 2020;91(1):21–32.

    Article  PubMed  Google Scholar 

  95. Köhler-Forsberg O, N Lydholm C, Hjorthøj C, Nordentoft M, Mors O, Benros ME. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: meta-analysis of clinical trials. Acta Psychiatr Scand. 2019;139(5):404–19.

    Article  PubMed  Google Scholar 

  96. Adzic M, Brkic Z, Mitic M, Francija E, Jovicic MJ, Radulovic J, et al. Therapeutic Strategies for Treatment of Inflammation-related Depression. Curr Neuropharmacol. 2018;16(2):176–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hilgendorff A, Muth H, Parviz B, Staubitz A, Haberbosch W, Tillmanns H, et al. Statins differ in their ability to block NF-kappa B activation in human blood monocytes. Int J Clin Pharmacol Ther. 2003;41(9):397–401.

    Article  PubMed  CAS  Google Scholar 

  98. Rosenblat JD. Targeting the immune system in the treatment of bipolar disorder. Psychopharmacology. 2019;236(10):2909–21.

    Article  PubMed  CAS  Google Scholar 

  99. Berk M, Dean OM, Cotton SM, Jeavons S, Tanious M, Kohlmann K, et al. The efficacy of adjunctive N-acetylcysteine in major depressive disorder: a double-blind, randomized, placebo-controlled trial. J Clin Psychiatry. 2014;75(6):628–36.

    Article  PubMed  CAS  Google Scholar 

  100. Appleton KM, Voyias PD, Sallis HM, Dawson S, Ness AR, Churchill R, et al. Omega-3 fatty acids for depression in adults. Cochrane Database Syst Rev. 2021;11(11):CD004692.

    PubMed  Google Scholar 

  101. Isolauri E, Sütas Y, Kankaanpää P, Arvilommi H, Salminen S. Probiotics: effects on immunity. Am J Clin Nutr. 2001;73(2 Suppl):444S-450S.

    Article  PubMed  CAS  Google Scholar 

  102. Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325–48.

    Article  PubMed  CAS  Google Scholar 

  103. Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N. Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol. 2006;21(4):227–31.

    Article  PubMed  Google Scholar 

  104. Berk M, Woods RL, Nelson MR, Shah RC, Reid CM, Storey E, et al. Effect of Aspirin vs Placebo on the Prevention of Depression in Older People: A Randomized Clinical Trial. JAMA Psychiat. 2020;77(10):1012–20.

    Article  Google Scholar 

  105. Kim HB, Kim JS, Jung JG. The association between aspirin use and depression: a systematic review and meta-analysis of observational studies. Pharmacoepidemiol Drug Saf. 2020;29(6):613–22.

    Article  PubMed  Google Scholar 

  106. Faridhosseini F, Sadeghi R, Farid L, Pourgholami M. Celecoxib: a new augmentation strategy for depressive mood episodes. A systematic review and meta-analysis of randomized placebo-controlled trials. Hum Psychopharmacol. 2014;29(3):216–23.

    Article  PubMed  CAS  Google Scholar 

  107. Baune BT, Sampson E, Louise J, Hori H, Schubert KO, Clark SR, et al. No evidence for clinical efficacy of adjunctive celecoxib with vortioxetine in the treatment of depression: A 6-week double-blind placebo controlled randomized trial. Eur Neuropsychopharmacol. 2021;53:34–46.

    Article  PubMed  CAS  Google Scholar 

  108. Iyengar RL, Gandhi S, Aneja A, Thorpe K, Razzouk L, Greenberg J, et al. NSAIDs are associated with lower depression scores in patients with osteoarthritis. Am J Med. 2013;126(11):1017.e11-8.

    Article  PubMed  CAS  Google Scholar 

  109. Fields C, Drye L, Vaidya V, Lyketsos C, ADAPT Research Group. Celecoxib or naproxen treatment does not benefit depressive symptoms in persons age 70 and older: findings from a randomized controlled trial. Am J Geriatr Psychiatry. 2012;20(6):505–13.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mahagna H, Amital D, Amital H. A randomized double-blinded study comparing giving etoricoxib vs. placebo to female patients with fibromyalgia. Int J Clin Pract. 2016;70(2):163–70.

    Article  PubMed  CAS  Google Scholar 

  111. Arana GW, Santos AB, Laraia MT, McLeod-Bryant S, Beale MD, Rames LJ, et al. Dexamethasone for the treatment of depression: a randomized, placebo-controlled, double-blind trial. Am J Psychiatry. 1995;152(2):265–7.

    Article  PubMed  CAS  Google Scholar 

  112. DeBattista C, Posener JA, Kalehzan BM, Schatzberg AF. Acute antidepressant effects of intravenous hydrocortisone and CRH in depressed patients: a double-blind, placebo-controlled study. Am J Psychiatry. 2000;157(8):1334–7.

    Article  PubMed  CAS  Google Scholar 

  113. Kok L, Hillegers MH, Veldhuijzen DS, Cornelisse S, Nierich AP, van der Maaten JM, Dexamethasone for Cardiac Surgery Study Group, et al. The effect of dexamethasone on symptoms of posttraumatic stress disorder and depression after cardiac surgery and intensive care admission: longitudinal follow-up of a randomized controlled trial. Crit Care Med. 2016;44(3):512–20.

    Article  PubMed  CAS  Google Scholar 

  114. Zazula R, Husain MI, Mohebbi M, Walker AJ, Chaudhry IB, Khoso AB, et al. Minocycline as adjunctive treatment for major depressive disorder: Pooled data from two randomized controlled trials. Aust N Z J Psychiatry. 2021;55(8):784–98.

    Article  PubMed  Google Scholar 

  115. De Giorgi R, De Crescenzo F, Rizzo Pesci N, Martens M, Howard W, et al. Statins for major depressive disorder: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2021;16(3):e0249409.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dave CV, Winterstein AG, Park H, Cook RL, Hartzema AG. Comparative risk of lipophilic and hydrophilic statins on incident depression: A retrospective cohort study. J Affect Disord. 2018;238:542–6.

    Article  PubMed  CAS  Google Scholar 

  117. Colle R, de Larminat D, Rotenberg S, Hozer F, Hardy P, Verstuyft C, et al. PPAR-γ Agonists for the Treatment of Major Depression: A Review. Pharmacopsychiatry. 2017;50(2):49–55.

    PubMed  CAS  Google Scholar 

  118. Dashti-Khavidaki S, Gharekhani A, Khatami MR, Miri ES, Khalili H, Razeghi E, et al. Effects of omega-3 fatty acids on depression and quality of life in maintenance hemodialysis patients. Am J Ther. 2014;21(4):275–87.

    Article  PubMed  Google Scholar 

  119. Freeman MP, Hibbeln JR, Silver M, Hirschberg AM, Wang B, Yule AM, et al. Omega-3 fatty acids for major depressive disorder associated with the menopausal transition: a preliminary open trial. Menopause. 2011;18(3):279–84.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tajalizadekhoob Y, Sharifi F, Fakhrzadeh H, Mirarefin M, Ghaderpanahi M, Badamchizade Z, et al. The effect of low-dose omega 3 fatty acids on the treatment of mild to moderate depression in the elderly: a double-blind, randomized, placebo-controlled study. Eur Arch Psychiatry Clin Neurosci. 2011;261(8):539–49.

    Article  PubMed  Google Scholar 

  121. Liu RT, Walsh RFL, Sheehan AE. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev. 2019;102:13–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Fusar-Poli L, Vozza L, Gabbiadini A, Vanella A, Concas I, Tinacci S, et al. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr. 2020;60(15):2643–53.

    Article  PubMed  CAS  Google Scholar 

  123. Porcu M, Urbano MR, Verri WA Jr, Barbosa DS, Baracat M, Vargas HO, et al. Effects of adjunctive N-acetylcysteine on depressive symptoms: Modulation by baseline high-sensitivity C-reactive protein. Psychiatry Res. 2018;263:268–74.

    Article  PubMed  CAS  Google Scholar 

  124. Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23(2):335–43.

    Article  PubMed  CAS  Google Scholar 

  125. Knight JM, Costanzo ES, Singh S, Yin Z, Szabo A, Pawar DS, et al. The IL-6 antagonist tocilizumab is associated with worse depression and related symptoms in the medically ill. Transl Psychiatry. 2021;11(1):58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiat. 2013;70(1):31–41.

    Article  CAS  Google Scholar 

  127. Bally M, Dendukuri N, Rich B, Nadeau L, Helin-Salmivaara A, Garbe E, et al. Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data. BMJ. 2017;357:j1909.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Haghbin H, Zakirkhodjaev N, Husain FF, Lee-Smith W, Aziz M. Risk of Gastrointestinal Bleeding with Concurrent Use of NSAID and SSRI: A Systematic Review and Network Meta-Analysis. Dig Dis Sci. 2023;68(5):1975–82.

    Article  PubMed  CAS  Google Scholar 

  129. Kenna HA, Poon AW, de los Angeles CP, Koran LM. Psychiatric complications of treatment with corticosteroids: review with case report. Psychiatry Clin Neurosci. 2011;65(6):549–60.

    Article  PubMed  CAS  Google Scholar 

  130. Miola A, Dal Porto V, Meda N, Perini G, Solmi M, Sambataro F. Secondary Mania induced by TNF-α inhibitors: A systematic review. Psychiatry Clin Neurosci. 2022;76(1):15–21.

    Article  PubMed  CAS  Google Scholar 

  131. Brundin L, Achtyes E. Has the time come to treat depression with anti-inflammatory medication? Acta Psychiatr Scand. 2019;139(5):401–3.

    Article  PubMed  CAS  Google Scholar 

  132. Andrade C. Anti-Inflammatory Treatments for Depression: Perspectives on How to Read a Meta-Analysis Critically. J Clin Psychiatry. 2019;80(3):19f12907.

    Article  PubMed  Google Scholar 

  133. Gigase FAJ, Smith E, Collins B, Moore K, Snijders GJLJ, Katz D, et al. The association between inflammatory markers in blood and cerebrospinal fluid: a systematic review and meta-analysis. Mol Psychiatry. 2023;28(4):1502–15.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This publication was partly made possible by grant number R01MH127315 from the National Institute of Mental Health (NIMH) at the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIMH.

Funding

National Institute of Mental Health, R01MH127315, R01MH127315.

Author information

Authors and Affiliations

Authors

Contributions

EACB and VR wrote the main manuscript text. EACB prepared Fig. 1 and Table 1. LDW and MMPR edited and added information to all the sections of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Eduardo Andres Calagua-Bedoya.

Ethics declarations

Conflict of Interest

MMPR has received research grant funding and consulting fees from Neurocrine, Alkermes, Takeda/ Millennium Pharmaceuticals, and AICure. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calagua-Bedoya, E.A., Rajasekaran, V., De Witte, L. et al. The Role of Inflammation in Depression and Beyond: A Primer for Clinicians. Curr Psychiatry Rep 26, 514–529 (2024). https://doi.org/10.1007/s11920-024-01526-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-024-01526-z

Keywords

Navigation