[go: up one dir, main page]

Skip to main content
Log in

Numerical Analysis of the Irreversible Behavior of Corundum Castable Purging Plugs During Service

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Purging plugs employed in ladles in the steel industry undergo severe thermomechanical loads owing to the cyclic operations, including preheating, transporting, stirring, and holding stages. For the smooth running of the process with less downtime, the lifespan of the purging plug needs to be aligned with the overhaul interval without failure. In the present study, to identify the thermomechanical failure mechanisms of corundum castable purging plugs with different slit structures via a quantitative evaluation method, the Drucker–Prager material constitutive model was applied to account for the irreversible behavior. The results indicate that both shear and tensile failure occur in the purging plug with rectangular slits, where the shear failure dominates in the middle of the holding stage and tensile failure appears during the stirring stage. Moreover, the premature shear failure occurs in the upper section near the working face for both types of purging plugs. The application of circular slits diminishes the stress concentration in the purging plug and changes the fracture mechanisms, extent, and occurrence time, which experience mere shear failure in the early stage of transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Liu, L. Li, and B. Li, ISIJ Int. 57(11), 1971. (2017).

    Article  Google Scholar 

  2. X. Guo, J. Yu, X. Ren, D. Xue, W. Xuan, Y. Zhong, and Z. Ren, Ironmak. Steelmak. 45(7), 648. (2018).

    Article  Google Scholar 

  3. Q.N. Hoang, M.A. Ramírez-Argáez, A.N. Conejo, B. Blanpain, and A. Dutta, JOM 70(10), 2109. (2018).

    Article  Google Scholar 

  4. A.N. Conejo, R. Mishra, and D. Mazumdar, Metall. Mater. Trans. B 50(3), 1490. (2019).

    Article  Google Scholar 

  5. Y. Liu, M. Ersson, H. Liu, P.G. Jönsson, and Y. Gan, Metall. Mater. Trans. B 50(1), 555. (2019).

    Article  Google Scholar 

  6. D. Sichen, Steel Res. Int. 83(9), 825. (2012).

    Article  Google Scholar 

  7. M. Nag, T. Agrawal, B. Nag, B. Singh, and S. Biswas, Eng. Failure Anal. 101, 447. (2019).

    Article  Google Scholar 

  8. B. Long, B. Andreas, and G.Y. Xu, Ceram. Int. 42(10), 11930. (2016).

    Article  Google Scholar 

  9. B. Long, G.Y. Xu, and B. Andreas, Int. J. Miner. Metall. Mater. 24(2), 186. (2017).

    Article  Google Scholar 

  10. B. Long, G.Y. Xu, A. Buhr, S.L. Jin, and H. Harmuth, Ceram. Int. 43(13), 9679. (2017).

    Article  Google Scholar 

  11. J. Poirier, E. Blond, E. de Bilbao, R. Michel, A. Coulon, J. Gillibert, M. Boussuge, Y. Zhang, D. Ryckelynk, G. Dusserre, T. Cutard, and P. Leplay, Metall. Res. Technol. 114(6), 610. (2017).

    Article  Google Scholar 

  12. S. Jin, H. Harmuth, D. Gruber, A. Buhr, S. Sinnema, and L. Rebouillat, Ironmak. Steelmak. 47(2), 145. (2020).

    Article  Google Scholar 

  13. Y. Lee, T.J. McKrell, and M.S. Kazimi, J. Nucl. Mater. 467, 172. (2015).

    Article  Google Scholar 

  14. X. Li, K. Zhang, H. Konietzky, Y. Wang, and X. Li, Nucl. Mater Energy 24, 100774. (2020).

    Article  Google Scholar 

  15. A. Hou, S. Jin, H. Harmuth, and D. Gruber, Steel Res. Int. 90(7), 1900116. (2019).

    Article  Google Scholar 

  16. F. Tan, Z. He, S. Jin, H. Cai, B. Li, Y. Li, and H. Harmuth, Steel Res. Int. 90(11), 1900213. (2019).

    Article  Google Scholar 

  17. F. Tan, Z. He, S. Jin, Q. Wang, L. Pan, Y. Li, and B. Li, ISIJ Int. 61(6), 1826. (2021).

    Article  Google Scholar 

  18. F. Tan, S. Jin, Z. He, and Y. Li, J. Iron Steel Res. Int. (unpublished research 2021).

  19. S.C. Cowin, Acta Mech. 20(1), 41. (1974).

    Article  MathSciNet  Google Scholar 

  20. K. Andreev, and H. Harmuth, J. Mater. Process. Technol. 143, 72. (2003).

    Article  Google Scholar 

  21. D.C. Drucker and W. Prager, Q. Appl. Math. 10(2), 157. (1952).

    Article  Google Scholar 

  22. L. Gao, Q. Cong-Shan, and Z. Hong-Tao, Eng. Fract. Mech. 47(2), 269. (1994).

    Article  Google Scholar 

  23. J.H. Hanson, and A.R. Ingraffea, Eng. Fract. Mech. 70(7), 1015. (2003).

    Article  Google Scholar 

  24. T. Yu, J.G. Teng, Y.L. Wong, and S.L. Dong, Eng. Struct. 32(3), 665. (2010).

    Article  Google Scholar 

  25. G. Arslan, Mater. Des. 28(10), 2596. (2007).

    Article  Google Scholar 

  26. S. Patra, B. Sikder, and A. Chanda, Int. J. Appl. Comput. Math. 6, 33. (2020).

    Article  Google Scholar 

  27. Y. Luo, and Z. Kang, Struct. Multidiscip. O. 47(1), 95. (2013).

    Article  Google Scholar 

  28. S. Jin, D. Gruber, H. Harmuth, and R. Rössler, Eng. Failure Anal. 62(2), 254. (2016).

    Article  Google Scholar 

  29. E. Dahlem, Characterization of refractory failure under combined hydrostatic and shear loading at elevated temperatures. PhD thesis (Leoben, Austria: University of Leoben, 2011).

  30. D. Gross and T. Seelig, Elastic-plastic fracture mechanics. In: Fracture Mechanics. Mechanical Engineering Series (Berlin: Springer, 2011), p. 145.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China [Grant Numbers 51974211 and 12072245] and the Special Project of Central Government for Local Science and Technology Development of Hubei Province [Grant Numbers 2019ZYYD003, 2019ZYYD076].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu He.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, F., Jin, S., He, Z. et al. Numerical Analysis of the Irreversible Behavior of Corundum Castable Purging Plugs During Service. JOM 73, 2911–2919 (2021). https://doi.org/10.1007/s11837-021-04838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04838-0

Navigation