[go: up one dir, main page]

Skip to main content
Log in

Accelerating Indefinite Summation: Simple Classes of Summands

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We present the history of indefinite summation starting with classics (Newton, Montmort, Taylor, Stirling, Euler, Boole, Jordan) followed by modern classics (Abramov, Gosper, Karr) to the current implementation in computer algebra system Maple. Along with historical presentation we describe several “acceleration techniques” of algorithms for indefinite summation which offer not only theoretical but also practical improvement in running time. Implementations of these algorithms in Maple are compared to standard Maple summation tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov S.A.: The summation of rational functions. Ž. Vyčisl. Mat. i Mat. Fiz. 11, 1071–1075 (1971)

    MATH  MathSciNet  Google Scholar 

  2. Abramov, S.A.: The rational component of the solution of a first order linear recurrence relation with rational right hand side. Ž. Vyčisl. Mat. i Mat. Fiz. 15(4), 1035–1039, 1090 (1975)

  3. Abramov, S.A.: Indefinite sums of rational functions. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC ’95, pp 303–308. ACM, New York (1995)

  4. Abramov, S.A., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC ’95, pp. 290–296. ACM, New York (1995)

  5. Abramov, S.A., Petkovšek, M.: Rational normal forms and minimal decompositions of hypergeometric terms. J. Symb. Comput. 33(5), 521–543 (2002). Computer algebra (London, ON, 2001)

    Google Scholar 

  6. Abramov S.A. et al.: Telescoping in the context of symbolic summation in Maple. J. Symb. Comput. 38(4), 1303–1326 (2004)

    Article  MathSciNet  Google Scholar 

  7. Bachmann, O., Wang, P.S., Zima, E.V.: Chains of recurrences—a method to expedite the evaluation of closed-form functions. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’94, pp. 242–249. ACM, New York (1994)

  8. Boole, G.: A Treatise on the Calculus of Finite Differences. Cambridge Library Collection. Cambridge University Press, Cambridge (2009) (Reprint of the 1860 original)

  9. Bostan, A., Chyzak, F., Salvy, B., Cluzeau, T.: Low complexity algorithms for linear recurrences. In: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, ISSAC ’06, pp. 31–38. ACM, New York, (2006)

  10. Bostan, A., Salvy, B., Schost, E.: Power series composition and change of basis. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’08, pp. 269–276. ACM, New York (2008)

  11. Egorychev, G.P., Zima, E.V. : On integral representation and algorithmic approaches to the evaluation of combinatorial sums. Technical Report CS-2002-02, School of Computer Science, University of Waterloo, January (2002)

  12. Euler, L.: Foundations of Differential Calculus. Springer, New York (2000) Translated from the Latin by John D. Blanton

  13. von zur Gathen J., Gerhard J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, New York (2003)

    Google Scholar 

  14. Gerhard, J.: Modular algorithms in symbolic summation and symbolic integration. Lecture Notes in Computer Science, vol. 3218. Springer, Berlin (2004)

  15. Gerhard, J., Giesbrecht, M., Storjohann, A., Zima, E.V. : Shiftless decomposition and polynomial-time rational summation. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 119–126 (Melectronic). ACM, New York (2003)

  16. Gosper, R.W. Jr.: Indefinite hypergeometric sums in MACSYMA. In: Proceedings of the 1977 MACSYMA Users’ Conference, pp. 237–251 (1977)

  17. Gosper R.W. Jr: Decision procedure for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. USA 75(1), 40–42 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley Publishing Company Advanced Book Program, Reading (1989). A foundation for computer science

  19. Jordan C.: Calculus of Finite Differences. Hungarian Agent Eggenberger Book-Shop, Budapest (1939)

    Google Scholar 

  20. Jordan C.: Calculus of Finite Differences, 3rd edn. Introduction by Harry C Carver. . Chelsea Publishing Co., New York (1965)

    Google Scholar 

  21. Karr, M.: Summation in finite terms (preliminary version). Technical Report CA-7602-2911, Massachusetts Computer Associates Inc., USA (1976)

  22. Karr M.: Summation in finite terms. J. Assoc. Comput. Mach. 28(2), 305–350 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karr M.: Theory of summation in finite terms. J. Symb. Comput. 1(3), 303–315 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lafon J.C.: Summation in finite terms. In: Buchberger, B., Collins, G.E., Loos, R., Albrecht, R. (eds) Computer Algebra Symbolic and Algebraic Computation, pp. 71–77. Springer, Vienna (1983)

    Google Scholar 

  25. Lisoněk P., Paule P., Strehl V.: Improvement of the degree setting in Gosper’s algorithm. J. Symb. Comput. 16(3), 243–258 (1993)

    Article  MATH  Google Scholar 

  26. Malm D.E.G., Subramaniam T.N.: The summation of rational functions by an extended Gosper algorithm. J. Symb Comput. 19(4), 293–304 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Man Y.-K.: On computing closed forms for indefinite summations. J. Symb. Comput. 16(4), 355–376 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Matusevich L.F.: Rational summation of rational functions. Beiträge Algebra Geom. 41(2), 531–536 (2000)

    MATH  MathSciNet  Google Scholar 

  29. Moenck, R.: On computing closed forms for summations. In: Proceedings of the 1977 MACSYMA Users’ Conference, pp. 225–236 (1977)

  30. Paule P.: Greatest factorial factorization and symbolic summation. J. Symb. Comput. 20(3), 235–268 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pirastu, R.: A note on the minimality problem in indefinite summation of rational functions. In: Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1993). Prépubl. Inst. Rech. Math. Av., vol. 1994/21 , pp. 95–101. Univ. Louis Pasteur, Strasbourg (1994)

  32. Pirastu, R.: On combinatorial identities: symbolic summation and umbral calculus. PhD thesis, Johannes Kepler Universität, Linz, Austria (1996)

  33. Pirastu R., Strehl V.: Rational summation and Gosper–Petkovšek representation. J. Symb. Comput. 20(5-6), 617–635 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Polyakov S.P.: Indefinite summation of rational functions with additional minimization of the summable part. Program. Comput. Softw. 34(2), 48–53 (2008)

    MathSciNet  Google Scholar 

  35. Polyakov S.P.: Indefinite summation of rational functions with factorization of denominators. Program. Comput. Softw. 37(6), 322–325 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schneider, C.: An implementation of Karr’s summation algorithm in Mathematica. Sém. Lothar. Combin. (electronic) 43:Art. S43b (1999)

  37. Schneider, C.: Symbolic summation with single-nested sum extensions. In: ISSAC 2004, pp. 282–289. ACM, New York (2004)

  38. Schneider C.: A new Sigma approach to multi-summation. Adv. Appl. Math. 34(4), 740–767 (2005)

    Article  MATH  Google Scholar 

  39. Tweedie, C.: Nicole’s contribution to the foundations of the calculus of finite differences. Proc. Edinb. Math. Soc. 36, 22–39 (1917)

    Google Scholar 

  40. van Hoeij, M.: Rational solutions of linear difference equations. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, ISSAC ’98, pp. 120–123. ACM, New York (1998)

  41. Zima, E.V.: Simplification and optimization transformations of chains of recurrences. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC ’95, pp. 42–50. ACM, New York (1995)

  42. Zima, E.V.: Direct algorithm for indefinite quasi-rational summation. Technical Report CARGO-2010-03, CARGO lab, WLU (2010)

  43. Zima, E.V.: Synthetic division in the context of indefinite rational summation. Technical Report CARGO-2011-01, CARGO lab, WLU (2011)

  44. Zima, E.V.: Synthetic division in the context of indefinite summation. In: Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation, SNC ’11, pp. 151–152. ACM, New York (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene V. Zima.

Additional information

This work is partially supported by NSERC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zima, E.V. Accelerating Indefinite Summation: Simple Classes of Summands. Math.Comput.Sci. 7, 455–472 (2013). https://doi.org/10.1007/s11786-013-0170-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-013-0170-9

Keywords

Mathematics Subject Classification (2000)

Navigation