Abstract
We present the history of indefinite summation starting with classics (Newton, Montmort, Taylor, Stirling, Euler, Boole, Jordan) followed by modern classics (Abramov, Gosper, Karr) to the current implementation in computer algebra system Maple. Along with historical presentation we describe several “acceleration techniques” of algorithms for indefinite summation which offer not only theoretical but also practical improvement in running time. Implementations of these algorithms in Maple are compared to standard Maple summation tools.
Similar content being viewed by others
References
Abramov S.A.: The summation of rational functions. Ž. Vyčisl. Mat. i Mat. Fiz. 11, 1071–1075 (1971)
Abramov, S.A.: The rational component of the solution of a first order linear recurrence relation with rational right hand side. Ž. Vyčisl. Mat. i Mat. Fiz. 15(4), 1035–1039, 1090 (1975)
Abramov, S.A.: Indefinite sums of rational functions. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC ’95, pp 303–308. ACM, New York (1995)
Abramov, S.A., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC ’95, pp. 290–296. ACM, New York (1995)
Abramov, S.A., Petkovšek, M.: Rational normal forms and minimal decompositions of hypergeometric terms. J. Symb. Comput. 33(5), 521–543 (2002). Computer algebra (London, ON, 2001)
Abramov S.A. et al.: Telescoping in the context of symbolic summation in Maple. J. Symb. Comput. 38(4), 1303–1326 (2004)
Bachmann, O., Wang, P.S., Zima, E.V.: Chains of recurrences—a method to expedite the evaluation of closed-form functions. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’94, pp. 242–249. ACM, New York (1994)
Boole, G.: A Treatise on the Calculus of Finite Differences. Cambridge Library Collection. Cambridge University Press, Cambridge (2009) (Reprint of the 1860 original)
Bostan, A., Chyzak, F., Salvy, B., Cluzeau, T.: Low complexity algorithms for linear recurrences. In: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, ISSAC ’06, pp. 31–38. ACM, New York, (2006)
Bostan, A., Salvy, B., Schost, E.: Power series composition and change of basis. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’08, pp. 269–276. ACM, New York (2008)
Egorychev, G.P., Zima, E.V. : On integral representation and algorithmic approaches to the evaluation of combinatorial sums. Technical Report CS-2002-02, School of Computer Science, University of Waterloo, January (2002)
Euler, L.: Foundations of Differential Calculus. Springer, New York (2000) Translated from the Latin by John D. Blanton
von zur Gathen J., Gerhard J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, New York (2003)
Gerhard, J.: Modular algorithms in symbolic summation and symbolic integration. Lecture Notes in Computer Science, vol. 3218. Springer, Berlin (2004)
Gerhard, J., Giesbrecht, M., Storjohann, A., Zima, E.V. : Shiftless decomposition and polynomial-time rational summation. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 119–126 (Melectronic). ACM, New York (2003)
Gosper, R.W. Jr.: Indefinite hypergeometric sums in MACSYMA. In: Proceedings of the 1977 MACSYMA Users’ Conference, pp. 237–251 (1977)
Gosper R.W. Jr: Decision procedure for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. USA 75(1), 40–42 (1978)
Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley Publishing Company Advanced Book Program, Reading (1989). A foundation for computer science
Jordan C.: Calculus of Finite Differences. Hungarian Agent Eggenberger Book-Shop, Budapest (1939)
Jordan C.: Calculus of Finite Differences, 3rd edn. Introduction by Harry C Carver. . Chelsea Publishing Co., New York (1965)
Karr, M.: Summation in finite terms (preliminary version). Technical Report CA-7602-2911, Massachusetts Computer Associates Inc., USA (1976)
Karr M.: Summation in finite terms. J. Assoc. Comput. Mach. 28(2), 305–350 (1981)
Karr M.: Theory of summation in finite terms. J. Symb. Comput. 1(3), 303–315 (1985)
Lafon J.C.: Summation in finite terms. In: Buchberger, B., Collins, G.E., Loos, R., Albrecht, R. (eds) Computer Algebra Symbolic and Algebraic Computation, pp. 71–77. Springer, Vienna (1983)
Lisoněk P., Paule P., Strehl V.: Improvement of the degree setting in Gosper’s algorithm. J. Symb. Comput. 16(3), 243–258 (1993)
Malm D.E.G., Subramaniam T.N.: The summation of rational functions by an extended Gosper algorithm. J. Symb Comput. 19(4), 293–304 (1995)
Man Y.-K.: On computing closed forms for indefinite summations. J. Symb. Comput. 16(4), 355–376 (1993)
Matusevich L.F.: Rational summation of rational functions. Beiträge Algebra Geom. 41(2), 531–536 (2000)
Moenck, R.: On computing closed forms for summations. In: Proceedings of the 1977 MACSYMA Users’ Conference, pp. 225–236 (1977)
Paule P.: Greatest factorial factorization and symbolic summation. J. Symb. Comput. 20(3), 235–268 (1995)
Pirastu, R.: A note on the minimality problem in indefinite summation of rational functions. In: Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1993). Prépubl. Inst. Rech. Math. Av., vol. 1994/21 , pp. 95–101. Univ. Louis Pasteur, Strasbourg (1994)
Pirastu, R.: On combinatorial identities: symbolic summation and umbral calculus. PhD thesis, Johannes Kepler Universität, Linz, Austria (1996)
Pirastu R., Strehl V.: Rational summation and Gosper–Petkovšek representation. J. Symb. Comput. 20(5-6), 617–635 (1995)
Polyakov S.P.: Indefinite summation of rational functions with additional minimization of the summable part. Program. Comput. Softw. 34(2), 48–53 (2008)
Polyakov S.P.: Indefinite summation of rational functions with factorization of denominators. Program. Comput. Softw. 37(6), 322–325 (2011)
Schneider, C.: An implementation of Karr’s summation algorithm in Mathematica. Sém. Lothar. Combin. (electronic) 43:Art. S43b (1999)
Schneider, C.: Symbolic summation with single-nested sum extensions. In: ISSAC 2004, pp. 282–289. ACM, New York (2004)
Schneider C.: A new Sigma approach to multi-summation. Adv. Appl. Math. 34(4), 740–767 (2005)
Tweedie, C.: Nicole’s contribution to the foundations of the calculus of finite differences. Proc. Edinb. Math. Soc. 36, 22–39 (1917)
van Hoeij, M.: Rational solutions of linear difference equations. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, ISSAC ’98, pp. 120–123. ACM, New York (1998)
Zima, E.V.: Simplification and optimization transformations of chains of recurrences. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC ’95, pp. 42–50. ACM, New York (1995)
Zima, E.V.: Direct algorithm for indefinite quasi-rational summation. Technical Report CARGO-2010-03, CARGO lab, WLU (2010)
Zima, E.V.: Synthetic division in the context of indefinite rational summation. Technical Report CARGO-2011-01, CARGO lab, WLU (2011)
Zima, E.V.: Synthetic division in the context of indefinite summation. In: Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation, SNC ’11, pp. 151–152. ACM, New York (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is partially supported by NSERC.
Rights and permissions
About this article
Cite this article
Zima, E.V. Accelerating Indefinite Summation: Simple Classes of Summands. Math.Comput.Sci. 7, 455–472 (2013). https://doi.org/10.1007/s11786-013-0170-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-013-0170-9