Abstract
Trajectory planning is a fundamental issue for robotic applications and automation in general. The ability to generate trajectories with given features is a key point to ensure significant results in terms of quality and ease of performing the required motion, especially at the high operating speeds necessary in many applications. The general problem of trajectory planning in Robotics is addressed in the paper, with an overview of the most significant methods, that have been proposed in the robotic literature to generate collision-free paths. The problem of finding an optimal trajectory for a given path is then discussed and some significant solutions are described.
Similar content being viewed by others
References
Sciavicco L., Siciliano B., Villani L., Oriolo G.: Robotics. Modelling, Planning and Control. Springer, London (2009)
Latombe J.C.: Robot Motion Planning. Kluwer, Norwell (1991)
Khatib,O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 500–505 (1985)
Volpe R.A, Khosla P.K: Manipulator control with superquadric artificial potential functions: theory and experiments. IEEE Trans. Syst. Man Cybern. 20(6), 1423–1436 (1990)
Volpe R.A.: Real and Artificial Forces in the Control of Manipulators: Theory and Experiments. Carnegie Mellon University, The Robotics Institute, Pittsburgh (1990)
Koditschek D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)
Kim J.O., Khosla P.K.: Real-time obstacle avoidance using harmonic potential functions. IEEE Trans. Robot. Autom. 8(3), 338–349 (1992)
Connoly, C.I., Burns, J.B.: Path planning using Laplace’s equation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2102–2106 (1990)
Connoly, C.I., Grupen, RA.: On the application of harmonic functions to robotics. In: Proceedings of the IEEE International Symposium on Intelligent Control, pp. 498–502 (1992)
Guldner J., Utkin V.I.: Sliding mode control for gradient tracking and robot navigation using artificial potential fields. IEEE Trans. Robot. Autom. 11(2), 247–254 (1995)
Ge S.S., Cui Y.J.: New potential functions for mobile robot path planning. IEEE Trans. Robot. Autom. 16(5), 616–620 (2000)
Barraquand J., Latombe J.C.: Robot motion planning: a distributed representation approach. Int. J. Robot. Res. 10(6), 628–649 (1991)
Caselli, S., Reggiani, M., Sbravati, R.: Parallel path planning with multiple evasion strategies. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 260–266 (2002)
Caselli, S., Reggiani M.: ERPP an experience-based randomized path planner. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1002–1008 (2000)
Caselli, S., Reggiani, M., Rocchi R.: Heuristic methods for randomized path planning in potential fields. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 426–431 (2001)
Amato, N.M., Wu, Y.: A randomized roadmap method for path and manipulation planning. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 113–120 (1996)
Hsu D., Kindel R., Latombe J.C., Rock S.: Randomized kinodynamic motion planning with moving obstacles. Int. J. Robot. Res. 21(3), 233–255 (2002)
Nissoux, C., Simon, T., Latombe, J.C.: Visibility based probabilistic roadmaps. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pp. 1316–1321 (1999)
Clark, C.M., Rock S.: Randomized motion planning for groups of nonholomic robots. In: Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, pp. 1316–1321 (1999)
Donald, B.R., Xavier, P.G.: Provably good approximation algorithms for optimal kinodynamic planning for Cartesian robots and open chain manipulators. In: Proceedings of the 6th Annual Symposium on Computational Geometry, pp. 290–300 (1990)
Fraichard, T., Laugier, C.: Dynamic trajectory planning, path-velocity decomposition and adjacent paths. In: Proceedings of the 2nd International Joint Conference on Artificial Intelligence, pp. 1592–1597 (1993)
Fiorini, P., Shiller, Z.: Time optimal trajectory planning in dynamic environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1553–1558 (1996)
Fraichard T.: Trajectory planning in a dynamic workspace: a state-time space approach. Adv. Robot. 13(1), 74–94 (1999)
Kumar, V., Efran, M., Ostrowski, J.: Motion planning and control of robots. In: Handbook of Industrial Robotics. 2nd edn, Shimon, Y. Nof (ed) (1999)
Gupta K., del Pobil A.P.: Practical Motion Planning in Robotics: Current Approaches and Future Directions. Wiley, West Sussex (1998)
Bobrow J.E, Dubowsky S., Gibson J.S.: Time-optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 4(3), 554–561 (1985)
Shin K.G., McKay N.D.: Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans. Autom. Control 30(6), 531–541 (1985)
Shin K.G., McKay N.D.: A dynamic programming approach to trajectory planning of robotic manipulators. IEEE Trans. Autom. Control 31(6), 491–500 (1986)
Balkan T.: A dynamic programming approach to optimal control of robotic manipulators. Mech. Res. Commun. 25(2), 225–230 (1998)
Croft E.A., Benhabib B., Fenton R.G.: Near time-optimal robot motion planning for on-line applications. J. Robot. Syst. 12(8), 553–567 (1995)
Pardo-Castellote, G., Cannon, R.H. Jr.: Proximate time-optimal algorithm for on-line path parameterization and modification. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1539–1546 (1996)
Costantinescu, D.: Smooth Time Optimal Trajectory Planning for Industrial Manipulators. PhD Thesis, The University of British Columbia (1998)
Constantinescu D., Croft E.A.: Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. J. Robot. Syst. 17(5), 233–249 (2000)
Shiller Z.: Time-energy optimal control of articulated systems with geometric path constraints. J. Dyn. Syst. Meas. Control 11(8), 139–143 (1996)
Lin C.S., Chang P.R., Luh J.Y.S: Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Trans. Autom. Control 28(12), 1066–1073 (1983)
Wang C.H., Horng J.G.: Constrained minimum-time path planning for robot manipulators via virtual knots of the cubic B-Spline functions. IEEE Trans. Autom. Control 35(5), 573–577 (1990)
Piazzi A., Visioli A.: Global minimum-time trajectory planning of mechanical manipulators using interval analysis. Int. J. Control 71(4), 631–652 (1988)
Piazzi, A., Visioli, A.: A global optimization approach to trajectory planning for industrial robots. In: Proceedings of the IEEE-RSJ International Conference on Intelligent Robots and Systems, pp. 1553–1559 (1997)
Piazzi, A.,Visioli, A.: A cutting-plane algorithm for minimum-time trajectory planning of industrial robots. In: Proceedings of the 36th Conference on Decision and Control, pp. 1216–1218 (1997)
Horst, R., Pardalos, P.M. (eds): Handbook of Global Optimization. Kluwer, Dordrecht (1995)
Guarino Lo Bianco, C., Piazzi, A.: A semi-infinite optimization approach to optimal spline trajectory planning of mechanical manipulators. In: Goberna e, M.A., Lopez, M.A. (eds.) Semi-infinite Programming: Recent Advances (2001)
GuarinoLo Bianco C., Piazzi A.: A hybrid algorithm for infinitely constrained optimization. Int. J. Syst. Sci. 32(1), 271–297 (2001)
Cao, B., Dodds, G.I.: Time-optimal and smooth constrained path planning for robot manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1853–1858 (1994)
Dong J., Ferreira P.M., Stori J.A.: Feed-rate optimization with jerk constraints for generating minimum-time trajectories. Int. J. Mach. Tools Manuf. 47(12), 1941–1955 (2007)
van Dijk, N.J.M., van de Wouw, N., Nijmeijer, H., Pancras, W.C.M.: Path-constrained motion planning for robotics based on kinematic constraints. In: Proceedings of the ASME IDETC/CIE Conference, pp. 1–10 (2007)
Dongmei, X., Daokui, Q., Fang, X.: Path constrained time-optimal robot control. In: Proceedings of the International Conference on Robotics and Biomimetics, pp. 1095–1100 (2006)
Tangpattanakul, P., Artrit, P.: Minimum-Time Trajectory of Robot Manipulator Using Harmony Search Algorithm. In: Proceedings of the IEEE 6th International Conference on ECTI-CON, pp. 354–357 (2009)
Joonyoung K., Sung-Rak K., Soo-Jong K., Dong-Hyeok K.: A practical approach for minimum-time trajectory planning for industrial robots. Ind. Robots Int. J. 37(1), 51–61 (2010)
Saramago S.F.P, Steffen V. Jr: Optimization of the trajectory planning of robot manipulators tacking into account the dynamics of the system. Mech. Mach. Theory 33(7), 883–894 (1998)
Saramago S.F.P, Steffen V. Jr: Optimal trajectory planning of robot manipulators in the presence of moving obstacles. Mech. Mach. Theory 35(7), 1079–1094 (2000)
Saravan R., Ramabalan S., Balamurugan C.: Evolutionary multi-criteria trajectory modeling of industrial robots in the presence of obstacles. Eng. Appl. Artif. Intell. 22, 329–342 (2009)
Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter, J., Diehl, M.: Time-energy optimal path tracking for robots: a numerically efficient optimization approach. In: Proceedings of the 10th International Workshop on Advanced Motion Control, pp. 727–732 (2008)
Xu, H., Zhuang, J., Wang, S., Zhu, Z.: Global Time-Energy Optimal Planning of Robot Trajectories. In: Proceedings of the International Conference on Mechatronics and Automation, pp. 4034–4039 (2009)
Martin B.J., Bobrow J.E.: Minimum effort motions for open chain manipulators with task-dependent end-effector constraints. Int. J. Robot. Res. 18(2), 213–224 (1999)
Simon D.: The application of neural networks to optimal robot trajectory planning. Robot. Autonom. Syst. 11, 23–34 (1993)
Bobrow J.E., Martin B., Sohl G., Wang E.C., Park F.C., Kim J.: Optimal robot motion for physical criteria. J. Robot. Syst. 18(12), 785–795 (2001)
Kyriakopoulos, K.J., Saridis, G.N.: Minimum jerk path generation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 364–369 (1998)
Simon D., Isik C.: A trigonometric trajectory generator for robotic arms. Int. J. Control 57(3), 505–517 (1993)
Piazzi, A., Visioli, A.: An interval algorithm for minimum-jerk trajectory planning of robot manipulators. In: Proceedings of the 36th Conference on Decision and Control, pp. 1924–1927 (1997)
Piazzi A., Visioli A.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 47(1), 140–149 (2000)
Corke, P.I.: Robotics toolbox for Matlab. Available on http://petercorke.com/RoboticsToolbox.html, 2010
Huang P., Xu Y., Liang B.: Global minimum-jerk trajectory planning of space manipulator. Int. J. Control Autom. Syst. 4(4), 405–413 (2006)
Petrinec, K., Kovacic, Z.: Trajectory planning algorithm based on the continuity of jerk. In: Proceedings of the Mediterranean Conference on Control and Automation, pp. 1–5 (2007)
Gasparetto A., Zanotto V.: A new method for smooth trajectory planning of robot manipulators. Mech. Mach. Theory 42(4), 455–471 (2007)
Gasparetto A., Zanotto V.: A technique for time-jerk optimal planning of robot trajectories. Robot. Comput. Integr. Manuf. 24(3), 415–426 (2008)
Gasparetto, A., Lanzutti, A., Vidoni, R., Zanotto, V.: Trajectory planning for manufacturing robots: algorithm definition and experimental results. In: Proceedings of the ASME 10th Biennial Conference on Engineering Systems Design and Analysis, pp. 609–618 (2010)
Lombai, F., Szederkenyi, G.: Trajectory tracking control of a 6-degree-of-freedom robot arm using nonlinear optimization. In: Proceedings of the IEEE International Workshop on Advanced Motion Control, pp. 655–660 (2008)
Lombai, F., Szederkenyi, G.: Throwing motion generation using nonlinear optimization on a 6-degree-of-freedom robot manipulator. In: Proceedings of the IEEE IInternational Conference on Mechatronics, pp. 1–6 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gasparetto, A., Boscariol, P., Lanzutti, A. et al. Trajectory Planning in Robotics. Math.Comput.Sci. 6, 269–279 (2012). https://doi.org/10.1007/s11786-012-0123-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-012-0123-8