[go: up one dir, main page]

Skip to main content
Log in

The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Biochars derived from animal manures may accumulate potentially toxic metals and cause a potential risk to ecosystem. The synchrotron-based X-ray spectroscopy, sequential fractionation schemes, bioaccessibility extraction and leaching procedure were performed on poultry and swine manurederived biochars (denoted PB and SB, respectively) to evaluate the variance of speciation and activity of Cu and Zn as affected by the feedstock and pyrolysis temperature. The results showed that Cu speciation was dependent on the feedstock with Cu-citrate-like in swine manure and species resembling Cu-glutathione and CuO in poultry manure. Pyrolyzed products, however, had similar Cu speciation mainly with species resembling Cu-citrate, CuO and CuS/Cu2S. Organic bound Zn and Zn3(PO4)2-like species were dominant in both feedstock and biochars. Both Cu and Zn leaching with synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) decreased greatly with the rise of pyrolysis temperature, which were consistent with the sequential extraction results that pyrolysis converted Cu and Zn into less labile phases such as organic/sulfide and residual fractions. The potential bioaccessibility of Zn decreased for both the PB and SB, closely depending on the content of non-residual Zn. The bioaccessibility of Cu, however, increased for the SB prepared at 300°C–700°C, probably due to the increased proportion of CuO. Concerning the results of sequential fractionation schemes, bioaccessibility extraction and leaching procedure, pyrolysis at 500°C was suggested as means of reducing Cu/Zn lability and poultry manure was more suitable for pyrolysis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yu X Y, Mu C L, Gu C, Liu C, Liu X J. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Chemosphere, 2011, 85(8): 1284–1289

    Article  CAS  Google Scholar 

  2. Galinato S P, Yoder J K, Granatstein D. The economic value of biochar in crop production and carbon sequestration. Energy Policy, 2011, 39(10): 6344–6350

    Article  Google Scholar 

  3. Bird M I, Wurster C M, de Paula Silva P H, Bass A M, de Nys R. Algal biochar production and properties. Bioresource Technology, 2011, 102(2): 1886–1891

    Article  CAS  Google Scholar 

  4. Roberts D A, Paul N A, Dworjanyn S A, BirdMI, Nys R D. Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports, 2015, 5: 9665

    Article  CAS  Google Scholar 

  5. Hale S E, Jensen J, Jakob L, Oleszczuk P, Hartnik T, Henriksen T, Okkenhaug G, Martinsen V, Cornelissen G. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. Environmental Science & Technology, 2013, 47(15): 8674–8683

    Article  CAS  Google Scholar 

  6. Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. Biochar effects on soil biota: a review. Soil Biology & Biochemistry, 2011, 43(9): 1812–1836

    Article  CAS  Google Scholar 

  7. Shan J, Ji R, Yu Y J, Xie Z B, Yan X Y. Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil. Scientific Reports, 2015, 5: 16000; doi: 10.1038/srep1600

    Article  CAS  Google Scholar 

  8. Cao X D, Ma L N, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 2009, 43(9): 3285–3291

    Article  CAS  Google Scholar 

  9. Nag S K, Kookana R, Smith L, Krull E, Macdonald L M, Gill G. Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere, 2011, 84(11): 1572–1577

    Article  CAS  Google Scholar 

  10. Qian L B, Chen B L, Hu D F. Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environmental Science & Technology, 2013, 47(6): 2737–2745

    Article  CAS  Google Scholar 

  11. Uchimiya M, Klasson K T,Wartelle L H, Lima IM. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere, 2011, 82(10): 1431–1437

    CAS  Google Scholar 

  12. Uchimiya M, Lima I M, Klasson K T, Chang S C, Wartelle L H, Rodgers J E. Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5538–5544

    Article  CAS  Google Scholar 

  13. Zhao L, Cao X D, Zheng W, John W S, Brajendra K S, Chen X. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1630–1636

    Article  CAS  Google Scholar 

  14. Nunes A A, Franca A S, Oliveira L S. Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Bioresource Technology, 2009, 100(5): 1786–1792

    Article  CAS  Google Scholar 

  15. Huang Y, Dong H, Shang B, Xin H, Zhu Z. Characterization of animal manure and cornstalk ashes as affected by incineration temperature. Applied Energy, 2011, 88(3): 947–952

    Article  CAS  Google Scholar 

  16. Uchimiya M, Bannon D I, Wartelle L H, Lima I M, Klasson K T. Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry, 2012, 60(20): 5035–5044

    Article  CAS  Google Scholar 

  17. Nicholson F A, Chambers B J, Williams J R, Unwin R J. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology, 1999, 70(1): 23–31

    Article  CAS  Google Scholar 

  18. Cang L, Wang Y J, Zhou DM, Dong Y H. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. Journal of Environmental Sciences (China), 2004, 16: 371–374

    CAS  Google Scholar 

  19. Verheijen F G A, Jeffery S, Bastos A C, van der Velde M, Diafas I. Biochar application to soils —A critical scientific review of effects on soil properties, processes and functions. Office for the official publications of the European Communities, Luxembourg, 2009

    Google Scholar 

  20. Lin Q, Liang L, Wang L H, Ni Q L, Yang K, Zhang J, Chen D L, Yang J J, Shen X D. Roles of pyrolysis on availability, species and distribution of Cu and Zn in the swine manure: chemical extractions and high-energy synchrotron analyses. Chemosphere, 2013, 93(9): 2094–2100

    Article  CAS  Google Scholar 

  21. Ressler T. WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-windows. Journal of Synchrotron Radiation, 1998, 5(2): 118–122

    Article  CAS  Google Scholar 

  22. Paktunc D, Foster A, Heald S, Laflamme G. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 2004, 68(5): 969–983

    Article  CAS  Google Scholar 

  23. Shi J, Wu B, Yuan X, Cao Y Y, Chen X C, Chen Y X, Hu T D. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant and Soil, 2008, 302(1-2): 163–174

    Article  CAS  Google Scholar 

  24. Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844–851

    Article  CAS  Google Scholar 

  25. Shinogi Y, Kanri Y. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology, 2003, 90(3): 241–247

    Article  CAS  Google Scholar 

  26. Kopittke PM, Menzies NW, de Jonge MD, McKenna B A, Donner E, Webb R I, Paterson D J, Howard D L, Ryan C G, Glover C J, Scheckel K G, Lombi E. In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of Cowpea. Plant Physiology, 2011, 156(2): 663–673

    Article  CAS  Google Scholar 

  27. Faridullah Irshad M, Yamamoto S, Honna T, Eneji A E. Characterization of trace elements in chicken and duck litter ash. Waste Management (New York, N.Y.), 2009, 29(1): 265–271

    Article  CAS  Google Scholar 

  28. Chen C Y, Wang H P, Wei Y L, Jou C J G, Huang Y C. Observations of nano copper in waste heat boiler fly ashes. Radiation Physics and Chemistry, 2006, 75(11): 1913–1915

    Article  CAS  Google Scholar 

  29. Legros S, Doelsch E, Masion A, Rose J, Borshneck D, Proux O, Hazemann J L, Saint-Macary H, Bottero J Y. Combining size fractionation, scanning electron microscopy, and X-ray absorption spectroscopy to probe zinc speciation in pig slurry. Journal of Environmental Quality, 2010, 39(2): 531–540

    Article  CAS  Google Scholar 

  30. Li A F, Zhang M K. Nutrient substances and pollutant elements in chicken manure from intensive poultry farms. Journal of Ecology and Rural Environment, 2009, 25: 64–67 (in Chinese)

    CAS  Google Scholar 

  31. Dubey B, Townsend T. Arsenic and lead leaching from the waste derived fertilizer ironite. Environmental Science & Technology, 2004, 38(20): 5400–5404

    Article  CAS  Google Scholar 

  32. Hao X Z, Zhou DM, Chen HM, Dong Y H. Leaching of copper and zinc in a garden soil receiving poultry and livestock manures from intensive farming. Pedosphere, 2008, 18(1): 69–76

    Article  CAS  Google Scholar 

  33. Lin Q, Xu X, Bao Q B, Oh K, Chen D L, Zhang L J, Shen X. Influence of water-dispersible colloids from organic manure on the mechanism of metal transport in historically contaminated soils: coupling colloid fractionation with high-energy synchrotron analy-sis. Journal of Soils and Sediments, 2016, 16(2): 349–359

    Article  CAS  Google Scholar 

  34. Smith E, Kempson I M, Juhasz A L, Weber J, Rofe A, Gancarz D, Naidu R, McLaren R G, Gäfe M. In vivo–in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environmental Science & Technology, 2011, 45(14): 6145–6152

    Article  CAS  Google Scholar 

  35. Rodrigues SM, Cruz N, Coelho C, Henriques B, Carvalho L, Duarte A C, Pereira E, Römkens P F A M. Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environmental Pollution, 2013, 183: 234–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (Grant Nos. 41371320, 21677123 and 41371447). We thank the staff members from the beamline (4W1B, 1W1B) at the Beijing Synchrotron Radiation Facility (BSRF), and beamline (15U) at the Shanghai Synchrotron Radiation Facility (SSRF) for their support for XAS study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Xu, X., Wang, L. et al. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature. Front. Environ. Sci. Eng. 11, 5 (2017). https://doi.org/10.1007/s11783-017-0924-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0924-8

Keywords

Navigation