[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Tuberculosis bacteria analysis in acid fast stained images of sputum smear

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) basically originates due to bacteria, influences the developing nations and disrupts their economy severely. TB like diseases are with a high mortality rate worldwide, but early detection highly increases the chances of survival. This paper presents a novel method for TB bacteria segmentation and classification using microscopic images (MI). Manual identification of the bacterial cell is a very difficult process. The automation in TB bacteria detection is the objective of this article using MI processing. The proposed segmentation method first performs the image enhancement followed by bacteria region masking. Further, the marking of bacteria points is performed by the marked point process model. Finally, the complete bacteria are identified by the superellipse and supervised variational contour models. The features are extracted using bag of visual words and handcrafted work for the image classification. Simulation results confirm the superiority of the proposed method as compared with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kanade, S., Nataraj, G., Ubale, M., et al.: Fluorescein diacetate vital staining for detecting viability of acid-fast bacilli in patients on antituberculosis treatment. Int. J. Myobacteriol 5, 294–298 (2016)

    Article  Google Scholar 

  2. World Health Organization, Global tuberculosis report 2015, WHO/HTM/TB/2015-22

  3. World Health Organization: Treatment of tuberculosis: Guidelines. 4th ed., WHO, Geneva (2010). WHO/HTM/TB/2009.420

  4. Vargasa, M. F., Sroubekd, F., Borregoc, J. A. et al.: Segmentation, autofocusing and signature extraction of tuberculosis sputum images. In: SPIE Proceedings Photonic Devices and Algorithms for Computing IV, vol. 4788. (2002)

  5. Forero, M.G., Cristóbal, G., Desco, M.: Automatic identification of Mycobacterium tuberculosis by Gaussian mixture models. J. Microsc. 223(2), 120–132 (2006)

    Article  MathSciNet  Google Scholar 

  6. Khutlang, R., Krishnan, S., Dendere, R., et al.: Classification of mycobacterium tuberculosis in images of ZN-stained sputum smears. IEEE Trans. Inf Technol. Biomed. 14(4), 949–957 (2010)

    Article  Google Scholar 

  7. Li, C., Wang, X., Eberl, S., et al.: A new energy framework with distribution descriptors for image segmentation. IEEE Trans. Image Process. 22(9), 3578–3590 (2013)

    Article  Google Scholar 

  8. Mozos, R.S., Cruz, F.P., Madden, M.G., et al.: An automated screening system for tuberculosis. IEEE J. Biomed. Health Inf. 18(3), 855–862 (2014)

    Article  Google Scholar 

  9. Melendez, J., Hogeweg, L., Sánchez, C.I., et al.: Accuracy of an automated system for tuberculosis detection on chest radiographs in high-risk screening. Int. J. Tuberc. Lung Dis. 22, 567–571 (2018)

    Article  Google Scholar 

  10. Lopez-Garnier, S., Sheen, P., Zimic, M.: Automatic diagnostics of tuberculosis using convolutional neural networks analysis of MODS digital images. PLoS ONE 14(2), e0212094 (2019)

    Article  Google Scholar 

  11. Sadanandan, S.K., Baltekin, O., Magnusson, K.E.G., et al.: Segmentation and track-analysis in time-lapse imaging of bacteria. IEEE J. Sel. Top. Signal Process. 10(1), 174–184 (2016)

    Article  Google Scholar 

  12. Ayas, S., Ekinci, M.: Random forest-based tuberculosis bacteria classification in images of ZN-stained sputum smear samples. Signal Image Video Process. 8, 49–61 (2014)

    Article  Google Scholar 

  13. Díaz-Huerta, J.L., Téllez-Anguiano, AdC, et al.: Image processing for AFB segmentation in bacilloscopies of pulmonary tuberculosis diagnosis. PLoS ONE 14(7), e0218861 (2019)

    Article  Google Scholar 

  14. Raji, C.G., Chandra, S.S.V.: Long-term forecasting the survival in liver transplantation using multilayer perceptron networks. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2318–2329 (2017)

    Article  Google Scholar 

  15. Yang, W., Wang, K., Zuo, W.: Neighborhood component feature selection for high-dimensional data. JCP 7, 161–168 (2012)

    Google Scholar 

  16. Willmore, T.J.: An introduction to differential geometry. Oxford University Press, Oxford (1959)

    MATH  Google Scholar 

  17. Zhang, M., Wu, T., Bennett, K.M.: Small blob identification in medical images using regional features from optimum scale. IEEE Trans. Biomed. Eng. 62(4), 1051–1062 (2015)

    Article  Google Scholar 

  18. Descombes, X., Zerubia, J.: Marked point process in image analysis. IEEE Signal Process. Mag. 19(5), 77–84 (2002)

    Article  Google Scholar 

  19. Li, C., Wang, X., Eberl, S., et al.: Supervised variational model with statistical inference and its application in medical image segmentation. IEEE Trans. Biomed. Eng. 62(1), 196–207 (2015)

    Article  Google Scholar 

  20. Mercan, E., Aksoy, S., Shapiro, L. G., et al.: Localization of diagnostically relevant regions of interest in whole slide images. In: International Conference on Pattern Recognition, Stockholm, pp. 1179–1184 (2014)

  21. De, K., Masilamani, V.: Image sharpness measure for blurred images in frequency domain. Procedia Eng. 64, 149–158 (2013)

    Article  Google Scholar 

  22. Saveljev, V., Kim, S.-K.: Amplitude, period and orientation of the moiré patterns in barrier 3D displays. J. Inf. Display 19(2), 81–90 (2018)

    Article  Google Scholar 

  23. Thorpe, J.A.: Elementary topics in differential geometry. Springer, New York (1979)

    Book  Google Scholar 

  24. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)

    Article  Google Scholar 

  25. Fu, Y., Zeng, H., Ma, L., et al.: Screen content image quality assessment using multi-scale difference of Gaussian. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2428–2432 (2018)

    Article  Google Scholar 

  26. Salden, A. H., Romeny, B. M. T. H., Viergever, M. A., et al.: Differential geometric description of 3D scalar images. Internal Report 3, DCV, 91(5) (1991)

  27. Frangi, A., Niessen, W., Vincken, K., et al.: Multiscale vessel enhancement filtering. In: Proceedings of the Medical Image Computing and Computer Assisted Intervention Conference, vol. 1496, pp. 130–137. (1998)

  28. Ripley, B.D.: Modelling spatial patterns. J. R. Stat. Inst. Ser. B 39, 172–212 (1997)

    MathSciNet  Google Scholar 

  29. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic geometry and its applications. Wiley, New York (1987)

    MATH  Google Scholar 

  30. Burger, W., Burge, M.J.: Principles of digital image processing: Core algorithms. Springer-Verlag, New York (2009)

    Book  Google Scholar 

  31. Loy, G., Zelinsky, A.: Fast radial symmetry for detecting points of interest. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 959–973 (2003)

    Article  Google Scholar 

  32. ZNSM-iDB: Ziehl Neelsen Sputum smear microscopy image data base. http://www.tbdb.org/cgi-bin/data/download Data.pl

  33. Chaurasia, V., Chaurasia, V.: Statistical feature extraction based fast fractal image compression. J. Vis. Commun. Image Represent. 41, 87–95 (2016)

    Article  Google Scholar 

  34. Kurmi, Y., Chaurasia, V., Ganesh, N.: Tumor malignancy detection using histopathology imaging. J. Med. Imaging Radiat. Sci. 50(4), 514–528 (2019)

    Article  Google Scholar 

  35. Foster, B., Bagci, U., Xu, Z., et al.: Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans. Biomed. Eng. 61(3), 711–724 (2015)

    Article  Google Scholar 

  36. Kurmi, Y., Chaurasia, V., Ganesh, N., et al.: Microscopic images classification for cancer diagnosis. SIViP (2019). https://doi.org/10.1007/s11760-019-01584-4

    Article  Google Scholar 

  37. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant Kurmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmi, Y., Chaurasia, V., Goel, A. et al. Tuberculosis bacteria analysis in acid fast stained images of sputum smear. SIViP 15, 175–183 (2021). https://doi.org/10.1007/s11760-020-01732-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01732-1

Keywords

Navigation