[go: up one dir, main page]

Skip to main content
Log in

Asymmetry analysis of breast thermograms using automated segmentation and texture features

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this article, we present a new approach for breast thermogram image analysis by developing a fully automatic segmentation of right and left breast for asymmetry analysis, using shape features of the breast and Polynomial curve fitting. Segmentation results are validated with their respective Ground Truths. Histogram and grey level co-occurrence matrix-based texture features are extracted from the segmented images. Statistical test shows that features are highly significant in detection of breast cancer. We have obtained an accuracy of 90%, sensitivity of 87.5% and specificity of 92.5% for a set of eighty images with forty normal and forty abnormal using SVM RBF classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acharya, U.R., Ng, E.Y.K., Tan, J.H., Sree, S.V.: Thermography based breast cancer detection using texture features and support vector machine. J. Med. Syst. 36(3), 1503–1510 (2012)

    Article  Google Scholar 

  2. Arakeri, M.P., Reddy, G.R.M.: Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images. SIViP 9(2), 409–425 (2015)

    Article  Google Scholar 

  3. Araujo, M.C., Lima, R.C., de Souza, R.M.: Interval symbolic feature extraction for thermography breast cancer detection. Expert Syst. Appl. 41(15), 6728–6737 (2014)

    Article  Google Scholar 

  4. Araujo, M.C.D., Lima, R.D.C.F.D., Magnani, F.S., da Silva, R.N.T., dos Santos, F.G.: The use of a database as an auxiliar tool in thermographic diagnosis for early detection of breast diseases. In: 12th Brazilian Congress of Thermal Engineering and Sciences, Belo Horizonte, MG. Proceedings of ENCIT 2008, ABCM (2008)

  5. A.S.Ali, M., nad Tarek Gaber, G.I.S., Hassanien, A.E., Snasel, V., Silva, L.F.: Detection of breast abnormalities of thermograms based on a new segmentation method. In: Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), vol. 5, pp. 255–261 (2015). doi:10.15439/2015F318

  6. Borchartt, B., Concia, T., Limab, R.C.F., Resminia, R., Sanchez, A.: Breast thermography from an image processing view point: a survey. Int. J. Signal Process. 93(10), 2785–2803 (2013)

    Article  Google Scholar 

  7. Borchartt, T.B., Resmini, R., Conci, A.: Thermal feature analysis to aid on breast disease diagnosis. In: 21st Brazilian Congress of Mechanical Engineering Natal RN, Brazil. Proceedings of COBEM, ABCM, pp. 24–28 (2011)

  8. Crum, W.R., Camara, O., Hill, D.L.G.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25(11), 1451–1461 (2006)

    Article  Google Scholar 

  9. EtehadTavakol, M., Chandran, V., Ng, E., Kafieh, R.: Breast cancer detection from thermal images using bispectral invariant features. Int. J. Thermal Sci. 69(1), 21–36 (2013)

    Article  Google Scholar 

  10. EtehadTavakol, M., NG, E.Y.K.: Breast thermography as a potential non-contact method in the early detection of cancer: a review. J. Mech. Med. Biol. 13(2), 133,000 (2013)

    Article  Google Scholar 

  11. Gaber, T., Ismail, G., Anter, A., Soliman, M., Ali, M., Semary, N., Hassanien, A.E., Snasel, V.: Thermogram breast cancer prediction approach based on neutrosophic sets and fuzzy c-means algorithm. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4254–4257 (2015)

  12. Khan, N.M., Ksantini, R., Ahmad, I.S., Guan, L.: SN-SVM: a sparse nonparametric support vector machine classifier. SIViP 8(8), 1625–1637 (2014)

    Article  Google Scholar 

  13. Krawczyk, B., Schaefer, G.: A hybrid classifier committee for analysing asymmetry features in breast thermograms. Appl. Soft Comput. 20(Special issue), 112–118 (2014)

    Article  Google Scholar 

  14. Lago, M., Ruprez, M., Martnez-Martnez, F., Martnez-Sanchis, S., Bakic, P., Monserrat, C.: Methodology based on genetic heuristics for in-vivo characterizing the patient-specific biomechanical behavior of the breast tissues. Expert Syst. Appl. 42(21), 7942–7950 (2015)

    Article  Google Scholar 

  15. Lee, H., Chen, Y.P.P.: Image based computer aided diagnosis system for cancer detection. Expert Syst. Appl. 42(12), 5356–5365 (2015)

    Article  Google Scholar 

  16. Lee, J., Chen, S., Reece, G.P., Crosby, M.A., Beahm, E.K., Markey, M.K.: A novel quantitative measure of breast curvature based on catenary. IEEE Trans. Biomed. Eng. 59(4), 1115–1124 (2012)

    Article  Google Scholar 

  17. Lipari, C.A., Head, J.: Advanced infrared image processing for breast cancer risk assessment. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, vol. 2, pp. 673–676 (1997)

  18. Mallucci, P., Branford, O.: Concepts in aesthetic breast dimensions analysis of the ideal breast. J. Plast. Reconstr. Aesthet. Surg. 65(1), 8–16 (2012)

    Article  Google Scholar 

  19. Moghbel, M., Mashohor, S.: A review of computer assisted detection/diagnosis (CAD) in breast thermography for breast cancer detection. Artif. Intell. Rev. 39(4), 305–313 (2013)

    Article  Google Scholar 

  20. Moghbel, M., Mashohor, S., ah Rozi Mahmud, H., Saripan, M.I.B.: Random walkers based segmentation method for breast thermography. In: IEEE EMBS International Conference on Biomedical Engineering and Sciences Langkawi, pp. 627–630 (2012)

  21. Motta, L.S., Conci, A., Lima, R.C.F., Diniz, E.M.: Automatic segmentation on thermograms in order to aid diagnosis and 2d modelling. In: Proceedings of 10th Workshop em Informatica Medica, Brazil, vol. 1, pp. 1610–1619 (2010)

  22. Nicandro, C.R., Efren, M.M., Yaneli, A.A., Enrique, M.D.C.M., Gabriel, A.M.H., Nancy, P.C., Alejandr, G.H., de Jesus, H.R.G., Rocio, B.M.: Evaluation of the diagnostic power of thermography in breast cancer using bayesian network classifiers. Comput. Math. Methods Med. 2013(5), 1–10 (2013)

    Article  MATH  Google Scholar 

  23. Daisy, P.A., Nagappa, A.N., Udupa, N., Mathew, N., Carla, B.: Effectiveness of a planned teaching program on improving the knoweldge on warning signs, risk factors and early detection methods. Indian J. Pharm. Pharmacol. 2(1), 6–9 (2015)

    Google Scholar 

  24. PROENG: image processing and image analysis applied to mastology. Available at http://visual.ic.uff.br/en/proeng/. Last Accessed on 5th Oct. 2015

  25. Qi, H., Snyder, W.E., Head, J.F., Elliott, R.L.: Detecting breast cancer from infrared images by asymmetry analysis. In: Engineering in Medicine and Biology Society Proceedings of the 22nd Annual International Conference of the IEEE , Chicago, vol. 2, pp. 1227–1228 (2000)

  26. Sathish, D., Kamath, S., Rajagopal, K.V., Prasad, K.: Medical imaging techniques and computer aided diagnostic approaches for the detection of breast cancer with an emphasis on thermography a review. Int. J. Med. Eng. Inform. 8(3), 275–299 (2016)

    Article  Google Scholar 

  27. Schaefera, G., Zavisek, M., Nakashima, T.: Thermography based breast cancer analysis using statistical features and fuzzy classification. Pattern Recogn. 47(6), 1133–1137 (2009)

    Article  Google Scholar 

  28. Silva, L.F., Saade, D.C.M., Sequeiros, G.O., Silva, A.C., Paiva, A.C.: A new database for breast research with infrared image. J. Med. Imaging Health Inform. 4(1), 92–100 (2014)

    Article  Google Scholar 

  29. de Souza Marques, R.: Automatic Segmentation of the Breasts in Thermal Imaging. Master’s thesis, Niteri, RJ (2012)

  30. Tan, T.Z., Quek, C., Ng, G., Ng, E.: A novel cognitive interpretation of breast cancer thermography with complementary learning fuzzy neural memory structure. Expert Syst. Appl. 33(3), 652–666 (2007)

    Article  Google Scholar 

  31. Walker, D., Kaczor, T.: Breast thermography: history, theory, and use. Nat. Med. 4(7) (2012). Available at http://www.naturalmedicinejournal.com. Last accessed on 6th Sept 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayakshini Sathish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathish, D., Kamath, S., Prasad, K. et al. Asymmetry analysis of breast thermograms using automated segmentation and texture features. SIViP 11, 745–752 (2017). https://doi.org/10.1007/s11760-016-1018-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1018-y

Keywords

Navigation