[go: up one dir, main page]

Skip to main content
Log in

Mechanical and Microstructural Characteristics of Underwater Friction Stir Welded AA5083 Armor-Grade Aluminum Alloy Joints

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Friction Stir Welding procedure (FSW) is a promising approach for a variety of joined aluminum composites. However, using FSW in the welding of aluminum materials is a challenge. In recent years, there has been significant progress. Underwater friction stir welding (UWFSW) is a skilled procedure. It is a completely new and futuristic technology. The non-consumable tool runs over the substrate inside water without emitting any fumes in this method. There are several key advantages, including minimal distortion, a lack of liquefaction caused by imperfections, and excellent joining power. The quality of FSW joints in underwater is determined by factors such as tool rotational speed (TRS), tool transverse speed (TTS), tool tilt angle (TTA), and pin profiles. Each working parameter has a significant impact on joint strength. The purpose of this study is to examine the effect of UWFSW on the mechanical properties and microstructure characteristics of AA5083 armor-grade aluminum. In this work, one of the working characteristics is changed from the lowest to the highest level while the others remain constant. The joint formed from a straight hexagonal tool pin with a TRS of 1500 rpm, TTS of 40 mm/min, and TTA of 1° provided higher tensile strength and hardness than its counterparts due to the induction of stabilized material flow and the configuration of imperfection-free and perfect weld joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. H.A. Derazkola and F. Khodabakhshi, Underwater Submerged Dissimilar Friction-Stir Welding of AA5083 Aluminum Alloy and A441 AISI Steel, Int. J. Adv. Manuf. Technol., 2019, 102(9–12), p 4383–4395.

    Article  Google Scholar 

  2. H.A. Derazkola and F. Khodabakhshi, Intermetallic Compounds (IMCs) Formation during Dissimilar Friction-Stir Welding of AA5005 Aluminum Alloy to St-52 Steel: Numerical Modeling and Experimental Study, Int. J. Adv. Manuf. Technol. 2018 1009, 2018, 100(9), p 2401–2422. https://doi.org/10.1007/S00170-018-2879-8

    Article  Google Scholar 

  3. H.A. Derazkola, E. Garcia and M. Elyasi, Underwater Friction Stir Welding of PC: Experimental Study and Thermo-Mechanical Modelling, J. Manuf. Process., 2021, 65, p 161–173.

    Article  Google Scholar 

  4. Z. Zhang, B.L. Xiao and Z.Y. Ma, Enhancing Mechanical Properties of Friction Stir Welded 2219Al-T6 Joints at High Welding Speed through Water Cooling and Post-Welding Artificial Ageing, Mater. Charact., 2015, 106, p 255–265. https://doi.org/10.1016/j.matchar.2015.06.003

    Article  CAS  Google Scholar 

  5. K. Bijanrostami, R.V. Barenji and M. Hashemipour, Effect of Traverse and Rotational Speeds on the Tensile Behavior of the Underwater Dissimilar Friction Stir Welded Aluminum Alloys, J. Mater. Eng. Perform., 2017, 26(2), p 909–920.

    Article  CAS  Google Scholar 

  6. T. Miyamori, Y. Sato and H. Kokawa, Influence of Underwater Operation on Friction Stir Welding of Medium Carbon Steel, Miner. Met. Mater. Ser., 2017, 9783319523828, p 23–28.

    Google Scholar 

  7. H. Zhang and H. Liu, Characteristics and Formation Mechanisms of Welding Defects in Underwater Friction Stir Welded Aluminum Alloy, Metallogr. Microstruct. Anal., 2012, 1(6), p 269–281.

    Article  CAS  Google Scholar 

  8. F. Heirani, A. Abbasi and M. Ardestani, Effects of Processing Parameters on Microstructure and Mechanical Behaviors of Underwater Friction Stir Welding of Al5083 Alloy, J. Manuf. Process., 2017, 25, p 77–84.

    Article  Google Scholar 

  9. A. Laska, M. Szkodo, D. Koszelow, and P. Cavaliere, Effect of Processing Parameters on Strength and Corrosion Resistance of Friction Stir-Welded AA6082, J. Met., 2022, 12(2), p192–207.

    Article  CAS  Google Scholar 

  10. Z. Zhang, B.L. Xiao and Z.Y. Ma, Influence of Water Cooling on Microstructure and Mechanical Properties of Friction Stir Welded 2014Al-T6 Joints, Mater. Sci. Eng. A, 2014, 614, p 6–15.

    Article  CAS  Google Scholar 

  11. Q. Wang, Y. Zhao, K. Yan and S. Lu, Corrosion Behavior of Spray Formed 7055 Aluminum Alloy Joint Welded by Underwater Friction Stir Welding, Mater. Des., 2015, 68, p 97–103.

    Article  CAS  Google Scholar 

  12. H.J. Zhang, H.J. Liu and L. Yu, Microstructure and Mechanical Properties as a Function of Rotation Speed in Underwater Friction Stir Welded Aluminum Alloy Joints, Mater. Des., 2011, 32(8–9), p 4402–4407.

    Article  CAS  Google Scholar 

  13. H.J. Liu, H.J. Zhang and L. Yu, Effect of Welding Speed on Microstructures and Mechanical Properties of Underwater Friction Stir Welded 2219 Aluminum Alloy, Mater. Des., 2011, 32(3), p 1548–1553.

    Article  CAS  Google Scholar 

  14. K. Elangovan, V. Balasubramanian and S. Babu, Predicting Tensile Strength of Friction Stir Welded AA6061 Aluminium Alloy Joints by a Mathematical Model, Mater. Des., 2009, 30(1), p 188–193.

    Article  CAS  Google Scholar 

  15. K. Ramanjaneyulu, G.M. Reddy, A.V. Rao and R. Markandeya, Structure-Property Correlation of AA2014 Friction Stir Welds: Role of Tool Pin Profile, J. Mater. Eng. Perform., 2013, 22(8), p 2224–2240.

    Article  CAS  Google Scholar 

  16. S.S. Sabari, S. Malarvizhi and V. Balasubramanian, Characteristics of FSW and UWFSW Joints of AA2519-T87 Aluminium Alloy: Effect of Tool Rotation Speed, J. Manuf. Process., 2016, 22, p 278–289.

    Article  Google Scholar 

  17. J. Hoyos, V. Pereira, R. Giorjao, T. McNelley and A. Ramírez, Effect of friction stir welding on hydrogen content of ISO 3183 X80Msteel, J. Manuf. Processes, 2016, 22, p 82–89.

    Article  Google Scholar 

  18. Y. Zhao, Q. Wang, H. Chen and K. Yan, Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding, Mater Design, 2014, 56, p 725–730.

    Article  CAS  Google Scholar 

  19. E.E. Kishta and B. Darras, Experimental investigation of underwater friction-stir welding of 50 marine grade aluminium alloy, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 2016, 230(3), p 458–465.

    Article  CAS  Google Scholar 

  20. X. Feng, H. Liu and J.C. Lippold, Microstructure Characterization of the Stir Zone of Submerged Friction Stir Processed Aluminium Alloy 2219, Mater. Charact., 2013, 82, p 97–102.

    Article  CAS  Google Scholar 

  21. H. Zhang and H. Liu, Mathematical Model and Optimization for Underwater Friction Stir Welding of a Heat-Treatable Aluminium Alloy, Mater. Des., 2013, 45, p 206–211.

    Article  CAS  Google Scholar 

  22. M.J. Peel, A. Steuwer and P.J. Withers, Dissimilar Friction Stir Welds in AA5083-AA6082. Part II Process Parameter Effects on Microstructure, Metall. Mater. Trans. A, 2006, 37, p 2195–2206. https://doi.org/10.1007/BF02586139

    Article  Google Scholar 

  23. S. Deng, Y. Deng, Z. Zhang, L. Ye, Effect of Welding Parameters on Microstructure and Mechanical Properties of 6082-T6 Aluminium Alloy FSW joint, 2018, 49(10), p 2413–2422.

  24. C. Rajendran, K. Srinivasan, V. Balasubramanian, H. Balaji and P. Selvaraj, Evaluation of Load-Carrying Capabilities of Friction Stir Welded, TIG Welded and Riveted Joints of AA2014-T6 Aluminium Alloy, Aircr. Eng. Aerosp. Technol., 2019, 91(9), p 1238–1244.

    Google Scholar 

  25. E.F. Shultz, E.G. Cole, C.B. Smith, M.R. Zinn, N.J. Ferrier and F.E. Pfefferkorn, Effect of compliance and travel angle on friction stir welding with gaps, J. Manuf. Sci. Eng., 2010, 132(4), p 15–29.

    Article  Google Scholar 

  26. B. Li, Y. Shen and W. Hu, The Study on Defects in Aluminum 2219–T6 Thick Butt Friction Stir Welds with the Application of Multiple Non-Destructive Testing Methods, Mater. Des, 2011, 32(4), p 2073–2084.

    Article  CAS  Google Scholar 

  27. S.S. Sabari, S. Malarvizhi and V. Balasubramanian, The Effect of Pin Profiles on the Microstructure and Mechanical Properties of Underwater Friction Stir Welded AA2519-T87 Aluminium Alloy, Int. J. Mech. Mater. Eng., 2016, 11(1), p 1–14. https://doi.org/10.1186/S40712-016-0058-Y/FIGURES/8

    Article  Google Scholar 

  28. F. Khodabakhshi, M. Nosko and A.P. Gerlich, Effects of Graphene Nano-Platelets (GNPs) on the Microstructural Characteristics and Textural Development of an Al-Mg Alloy during Friction-Stir Processing, Surf. Coat. Technol., 2018, 335, p 288–305.

    Article  CAS  Google Scholar 

  29. F. Khodabakhshi, M. Nosko and A.P. Gerlich, Influence of CNTs Decomposition during Reactive Friction-Stir Processing of an Al-Mg Alloy on the Correlation between Microstructural Characteristics and Microtextural Components, J. Microsc, 2018, 271(2), p 188–206. https://doi.org/10.1111/JMI.12708

    Article  CAS  Google Scholar 

  30. J. Qing Su, W. Nelson, J. Sterling, Microstructure Evolution During FSW/FSP of High Strength Aluminum Alloys, Mater. Sci. Eng. A., 2005, 405(1–2), p 277–286. https://doi.org/10.1016/j.msea.2005.06.009

    Article  CAS  Google Scholar 

  31. T. McNelley, S. Swaminathan, J.S.-S. Materialia, and undefined 2008, Recrystallization Mechanisms during Friction Stir Welding/Processing of Aluminum Alloys, Elsevier, 2007, https://doi.org/10.1016/j.scriptamat.2007.09.064

  32. W. Safeen, S. Hussain, A. Wasim, M. Jahanzaib, H. Aziz and H. Abdalla, Predicting the Tensile Strength, Impact Toughness, and Hardness of Friction Stir-Welded AA6061-T6 Using Response Surface Methodology, Int. J. Adv. Manuf. Technol., 2016, 87(5–8), p 1765–1781.

    Article  Google Scholar 

  33. F.C. Liu and Z.Y. Ma, Influence of Tool Dimension and Welding Parameters on Microstructure and Mechanical Properties of Friction-Stir-Welded 6061-T651 Aluminum Alloy, Metall. Mater. Sci, 2008, 39(10), p 2378–2388.

    Google Scholar 

  34. S.S. Sabari, S. Malarvizhi and V. Balasubramanian, Influences of Tool Traverse Speed on Tensile Properties of Air Cooled and Water Cooled Friction Stir Welded AA2519-T87 Aluminium Alloy Joints, J. Mater. Process. Technol., 2016, 237, p 286–300.

    Article  CAS  Google Scholar 

  35. H.J. Zhang, H.J. Liu and L. Yu, Microstructure and Mechanical Properties as a Function of Rotation Speed in Underwater Friction Stir Welded Aluminum Alloy Joints, Mater. Des., 2011, 8–9(32), p 4402–4407. https://doi.org/10.1016/J.MATDES.2011.03.073

    Article  Google Scholar 

  36. H.J. Liu, H.J. Zhang and Yu. Lei, Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy, Mater. Des., 2011, 32(3), p 1548–1553.

    Article  CAS  Google Scholar 

  37. C. Rajendran, K. Srinivasan, V. Balasubramanian, H. Balaji and P. Selvaraj, Effect of Tool Tilt Angle on Strength and Microstructural Characteristics of Friction Stir Welded Lap Joints of AA2014-T6 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2019, 29(9), p 1824–1835.

    Article  CAS  Google Scholar 

  38. K.R. Seighalani, M.K.B. Givi, A.M. Nasiri and P. Bahemmat, Investigations on the Effects of the Tool Material Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium, J. Mater. Eng. Perform., 2010, 19(7), p 955–962. https://doi.org/10.1007/S11665-009-9582-8

    Article  Google Scholar 

  39. K.K. Ramachandran, N. Murugan and S.S. Kumar, Study on Dissimilar Butt Joining of Aluminum Alloy, AA5052 and High Strength Low Alloy Steel through a Modified FSW Process, Mater. Sci. Forum, 2015, 830–831, p 278–281.

    Article  Google Scholar 

  40. S. Sabari, S. Malarvizhi and V. Balasubramanian, The effect of pin profiles on the microstructure and mechanical properties of underwater friction stir welded AA2519-T87 aluminium alloy, Int. J. Mech. Mater. Eng., 2016, 11(1), p 1–14.

    Article  Google Scholar 

  41. J.O. Dada, Fracture Mechanics and Mechanical Behaviour in AA5083-H111 Friction Stir Welds, Sci. Afr., 2020, 8, p e00265.

    Google Scholar 

  42. X.H. Zeng, P. Xue, D. Wang, D.R. Ni and B.L. Xiao, Material Flow and Void Defect Formation in Friction Stir Welding of Aluminium Alloys, Sci. Technol. Weld. Join., 2018, 23(8), p 677–686.

    Article  CAS  Google Scholar 

  43. A. Ajri, N. Rohatgi, and Y.C. Shin, Analysis of Defect Formation Mechanisms and their Effects on Weld Strength During Friction Stir Welding of Al 6061-T6 via Experiments and Finite Element Modeling. Int. J. Adv. Manuf., 2020, 107(11), p 4621–4635.

    Article  Google Scholar 

  44. C. Rajendran, K. Srinivasan, V. Balasubramanian, H. Balaji and P. Selvaraj, Effect of Tool Tilt Angle on Strength and Microstructural Characteristics of Friction Stir Welded AA2014-T6 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2019, 29(9), p 1824–1835.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Saravanakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanakumar, R., Rajasekaran, T., Pandey, C. et al. Mechanical and Microstructural Characteristics of Underwater Friction Stir Welded AA5083 Armor-Grade Aluminum Alloy Joints. J. of Materi Eng and Perform 31, 8459–8472 (2022). https://doi.org/10.1007/s11665-022-06832-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06832-2

Keywords

Navigation