[go: up one dir, main page]

Skip to main content
Log in

The Influence of Carbon Nanotube and Roll Bonding Parameters on the Bond Strength of Al Sheets

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigates the bond strength of aluminum sheets subjected to the roll bonding process in the presence of multiwall carbon nanotubes (MWCNTs). The effects of MWCNTs dispersion, thickness reduction, weight fraction of MWCNTs at the interface, and rolling temperature on the bond strength of the commercial pure aluminum sheets are studied. The peeling test is used to evaluate the bond strength of aluminum sheets. Optical microscopy and scanning electron microscopy are also used to evaluate the surface conditions of the peeled surfaces. Results indicate that, compared to the spread method, using the solution dispersion method to disperse MWCNTs reduces aluminum sheet’s bond strength. Also, the presence of MWCNTs reduces the sheet’s bond strength compared to aluminum sheets at a constant thickness reduction. However, bond strength is increased with higher thickness reductions in the presence or absence of MWCNTs. It is also shown that increasing the entry temperature improves bond strength, but that bond strength enhancement is lower in aluminum-MWCNTs sheets than in aluminum-aluminum sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354(6348), p 56–58

    Article  Google Scholar 

  2. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, 287(5453), p 637–640

    Article  Google Scholar 

  3. C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composite, Mater. Sci. Eng. A, 2007, 444(1), p 138–145

    Article  Google Scholar 

  4. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites, Carbon, 2009, 47(3), p 570–577

    Article  Google Scholar 

  5. D. Lahiri, S.R. Bakshi, A.K. Keshri, Y. Liu, and A. Agarwal, Dual Strengthening Mechanisms Induced by Carbon Nanotubes in Roll Bonded Aluminum Composites, Mater. Sci. Eng. A, 2009, 523(1–2), p 263–270

    Article  Google Scholar 

  6. S.R. Bakshi and A. Agarwal, An Analysis of the Factors Affecting Strengthening in Carbon Nanotube Reinforced Aluminum Composites, Carbon, 2011, 49(2), p 533–544

    Article  Google Scholar 

  7. S. Salimi, H. Izadi, and A.P. Gerlich, Fabrication of an Aluminum-Carbon Nanotube Metal Matrix Composite by Accumulative Roll-Bonding, J. Mater. Sci., 2011, 46(2), p 409–415

    Article  Google Scholar 

  8. S. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites: A Review, Int. Mater. Rev., 2010, 55(1), p 41–64

    Article  Google Scholar 

  9. D. Chunfeng, Z. Xuexi, and W. Dezun, Chemical Stability of Carbon Nanotubes in the 2024Al Matrix, Mater. Lett., 2007, 61(3), p 904–907

    Article  Google Scholar 

  10. A.M.K. Esawi and M.A. El Borady, Carbon Nanotube-Reinforced Aluminium Strips, Compos. Sci. Technol., 2008, 68(2), p 486–492

    Article  Google Scholar 

  11. J. Wu, H. Zhang, Y. Zhang, and X. Wang, Mechanical and Thermal Properties of Carbon Nanotube/Aluminum Composites Consolidated by Spark Plasma Sintering, Mater. Des., 2012, 41, p 344–348

    Article  Google Scholar 

  12. L. Wang, H. Choi, J.M. Myoung, and W. Lee, Mechanical Alloying of Multi-walled Carbon Nanotubes and Aluminium Powders for the Preparation of Carbon/Metal Composites, Carbon, 2009, 47(15), p 3427–3433

    Article  Google Scholar 

  13. D. Lahiri, V. Singh, A.K. Keshri, S. Seal, and A. Agarwal, Carbon Nanotube Toughened Hydroxyapatite by Spark Plasma Sintering: Microstructural Evolution and Multiscale Tribological Properties, Carbon, 2010, 48(11), p 3103–3120

    Article  Google Scholar 

  14. T. Laha, Y. Chen, D. Lahiri, and A. Agarwal, Tensile Properties of Carbon Nanotube Reinforced Aluminum Nanocomposite Fabricated by Plasma Spray Forming, Compos. A, 2009, 40(5), p 589–594

    Article  Google Scholar 

  15. Y. Wu and G.Y. Kim, Carbon Nanotube Reinforced Aluminum Composite Fabricated by Semi-solid Powder Processing, J. Mater. Process. Technol., 2011, 211(8), p 1341–1347

    Article  Google Scholar 

  16. A. Esawi and K. Morsi, Dispersion of Carbon Nanotubes (CNTs) in Aluminum Powder, Compos. A, 2007, 38(2), p 646–650

    Article  Google Scholar 

  17. C. Deng, X. Zhang, Y. Ma, and D. Wang, Fabrication of Aluminum Matrix Composite Reinforced with Carbon Nanotubes, Rare Met., 2007, 26(5), p 450–455

    Article  Google Scholar 

  18. R. Jamaati and M.R. Toroghinejad, Manufacturing of High-Strength Aluminum/Alumina Composite by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2010, 527(16), p 4146–4151

    Article  Google Scholar 

  19. R. Jamaati, M.R. Toroghinejad, and A. Najafizadeh, Application of Anodizing and CAR Processes for Manufacturing Al/Al2O3 Composite, Mater. Sci. Eng. A, 2010, 527(16), p 3857–3863

    Article  Google Scholar 

  20. N. Bay, Cold Welding Part II: Process Variation and Application, Met. Constr., 1986, 18(6), p 486–490

    Google Scholar 

  21. L.R. Vaidyanath, M. Nicholas, and D.R. Milner, Pressure Welding by Rolling, Br. Weld. J., 1959, 6, p 13–28

    Google Scholar 

  22. R. Jamaati and M.R. Toroghinejad, Effect of Al2O3 Nano-particles on the Bond Strength in CRB Process, Mater. Sci. Eng. A, 2010, 527(18), p 4858–4863

    Article  Google Scholar 

  23. M. Alizadeh and M. Paydar, Study on the Effect of Presence of TiH2 Particles on the Roll Bonding Behavior of Aluminum Alloy Strips, Mater. Des., 2009, 30(1), p 82–86

    Article  Google Scholar 

  24. C. Lu, K. Tieu, and D. Wexler, Significant Enhancement of Bond Strength in the Accumulative Roll Bonding Process Using Nano-sized SiO2 Particles, J. Mater. Process. Technol., 2009, 209(10), p 4830–4834

    Article  Google Scholar 

  25. M.A. Soltani, R. Jamaati, and M.R. Toroghinejad, The Influence of TiO2 Nano-particles on Bond Strength of Cold Roll Bonded Aluminum Strip, Mater. Sci. Eng. A, 2012, 550, p 367–374

    Article  Google Scholar 

  26. M. Rezayat and A. Akbarzadeh, Bonding Behavior of Al-Al2O3 Laminations During Roll Bonding Process, Mater. Des., 2012, 36, p 874–879

    Article  Google Scholar 

  27. T. Tabata, S. Masaki, and K. Azekura, Bond Criterion in Cold Pressure Welding of Aluminium, Mater. Sci. Technol., 1989, 5(4), p 377–381

    Article  Google Scholar 

  28. S. Hosseini, M. Hosseini, and H. Danesh Manesh, Bond Strength Evaluation of Roll Bonded Bi-layer Copper Alloy Strips in Different Rolling Conditions, Mater. Des., 2011, 32(1), p 76–81

    Article  Google Scholar 

  29. R. Jamaati and M.R. Toroghinejad, Investigation of the Parameters of the Cold Roll Bonding (CRB) Process, Mater. Sci. Eng. A, 2010, 527(9), p 2320–2326

    Article  Google Scholar 

  30. P.X. Hou, S. Bai, Q.H. Yang, C. Liu, and H.M. Cheng, Multi-step Purification of Carbon Nanotubes, Carbon, 2002, 40(1), p 81–85

    Article  Google Scholar 

  31. R. Jamaati and M. Toroghinejad, Cold Roll Bonding Bond Strengths: Review, Mater. Sci. Technol., 2011, 27(7), p 1101–1108

    Article  Google Scholar 

  32. R. Jamaati and M.R. Toroghinejad, High-Strength and Highly-Uniform Composite Produced by Anodizing and Accumulative Roll Bonding Processes, Mater. Des., 2010, 31(10), p 4816–4822

    Article  Google Scholar 

  33. L. Li, K. Nagai, and F. Yin, Progress in Cold Roll Bonding of Metals, Sci. Technol. Adv. Mater., 2008, 9(2), p 023001

    Article  Google Scholar 

  34. ASTM, D1876-08, Standard Test Method for Peel Resistance of Adhesives (T-Peel Test). 2001.

  35. R. Jamaati and M.R. Toroghinejad, The Role of Surface Preparation Parameters on Cold Roll Bonding of Aluminum Strips, J. Mater. Eng. Perform., 2011, 20(2), p 191–197

    Article  Google Scholar 

  36. H. Danesh Manesh and A. Karimi Taheri, Study of Mechanisms of Cold Roll Welding of Aluminium Alloy to Steel Strip, Mater. Sci. Technol., 2004, 20(8), p 1064–1068

    Article  Google Scholar 

  37. M. Eizadjou, H. Danesh Manesh, and K. Janghorban, Investigation of Roll Bonding Between Aluminum Alloy Strips, Mater. Des., 2008, 29(4), p 909–913

    Article  Google Scholar 

  38. H.A. Mohamed and J. Washburn, Mechanism of Solid State Pressure Welding, Weld. J., 1975, 30, p 2s–10s

    Google Scholar 

  39. J.A. Cave and J.D. Williams, The Mechanisms of Cold Pressure Welding by Rolling, J. Inst. Met., 1975, 101, p 203–207

    Google Scholar 

  40. H. Granjon, Fundamentals of Welding Metallurgy, Abington Publishing, Abington, 1991

    Book  Google Scholar 

  41. J.M. Parks, Recrystallization Welding, Weld J., 1953, 32(9), p 209s–221s

    Google Scholar 

  42. H. Yan and J.G. Lenard, A Study of Warm and Cold Roll-Bonding of An Aluminium Alloy, Mater. Sci. Eng. A, 2004, 385(1), p 419–428

    Article  Google Scholar 

  43. M. Eizadjou, H. Danesh Manesh, and K. Janghorban, Mechanism of Warm and Cold Roll Bonding of Aluminum Alloy Strips, Mater. Des., 2009, 30(10), p 4156–4161

    Article  Google Scholar 

  44. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis, Chemical Oxidation of Multiwalled Carbon Nanotubes, Carbon, 2008, 46(6), p 833–840

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Toroghinejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samadzadeh, M., Toroghinejad, M.R. The Influence of Carbon Nanotube and Roll Bonding Parameters on the Bond Strength of Al Sheets. J. of Materi Eng and Perform 23, 1887–1895 (2014). https://doi.org/10.1007/s11665-014-0949-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0949-0

Keywords

Navigation