[go: up one dir, main page]

Skip to main content
Log in

Improvement of Output Power of AlGaN-Based Ultraviolet Light Emitting Diodes with Sawtooth Barriers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A special structure with Al-composition graded barriers in the active region was designed to provide a sawtooth layer for the multiple quantum barriers, which were investigated numerically. The simulation demonstrates that the output power of optimized structure has reached to 50 mW and the efficiency droop also has significantly improved. By detailedly analyzing the results, the advantages of the ultraviolet light emitting diodes with sawtooth barriers are attributed to the design, which could enhance the ability of electrons reservoir, modulate carrier distribution and suppress electron spill out from the active region. As a result, it can enhance the rate of carrier radiation recombination and ameliorate internal quantum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Yeh, N. Yeh, C.-H. Lee, and T.-J. Ding, Renew. Sustain. Energy Rev. 75, 461 (2017).

    Article  Google Scholar 

  2. K. Song, M. Mohseni, and F. Taghipour, Water Res. 94, 341 (2016).

    Article  Google Scholar 

  3. H.-Y. Lin, C.-W. Sher, D.-H. Hsieh, X.-Y. Chen, H.-M.P. Chen, T.-M. Chen, K.-M. Lau, C.-H. Chen, C.-C. Lin, and H.-C. Kuo, Photon. Res. 5, 411 (2017).

    Article  Google Scholar 

  4. Y.-K. Kuo, J.-Y. Chang, and M.-C. Tsai, Opt. Lett. 35, 3285 (2010).

    Article  Google Scholar 

  5. Y.C. Shen, G.O. Mueller, and S. Watanabe, Appl. Phys. Lett. 91, 2 (2007).

    Google Scholar 

  6. I. Supryadkina, K. Abgaryan, D. Bazhanov, and I. Mutigullin, Phys. Status Solidi 11, 307 (2014).

    Article  Google Scholar 

  7. M. Leroux, N. Grandjean, and M. Laügt, Phys. Rev. B 58, 13371 (2016).

    Article  Google Scholar 

  8. C. Liu, Y.K. Ooi, and S.M. Islam, Appl. Phys. Lett. 110, 071103 (2017).

    Article  Google Scholar 

  9. J.Y. Chang, Y.A. Chang, and T.H. Wang, Opt. Lett. 39, 497 (2014)

    Article  Google Scholar 

  10. Y. Liu, B. Gao, and M. Gong, J. Appl. Phys. 121, 164501 (2017).

    Article  Google Scholar 

  11. F. Wu, H. Sun, I.A. AJia, I.S. Roqan, D. Zhang, J. Dai, C. Chen, Z.C. Feng, and X. Li, J. Phys. D 50, 245101 (2017).

    Article  Google Scholar 

  12. E.L. Waldron, J.W. Graff, and E.F. Schubert, Appl. Phys. Lett. 79, 2737 (2001).

    Article  Google Scholar 

  13. J. Li, Z. Guo, and F. Li, Superlattices Microstruct. 85, 454 (2015).

    Article  Google Scholar 

  14. F. Li, L. Wang, and G. Zhao, Superlattices Microstruct. 110, 324 (2017).

    Article  Google Scholar 

  15. B. Janjua, T.K. Ng, A.Y. Alyamani, M.M. El-Desouki, and B.S. Ooi, IEEE Photonics J. 6, 1 (2017).

    Google Scholar 

  16. Y. Zhang, Y. Lei, and L. Kai, Superlattices Microstruct. 82, 151 (2015).

    Article  Google Scholar 

  17. M.J. Chen, J.F. Chang, J.L. Yen, S.T. Chen, E.Z. Liang, and C.F. Lin, J. Appl. Phys. 93, 4253 (2003).

    Article  Google Scholar 

  18. H.J. Bungartz and M. Griebel, J. Complex. 15, 167 (1998).

    Article  Google Scholar 

  19. L.D. Marini and P. Pietra, COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 9, 257 (1990).

    Article  Google Scholar 

  20. Z.-H. Zhang, Y. Ji, W. Liu, S.T. Tan, Z. Kyaw, Z. Ju, X. Zhang, N. Hasanov, S. Lu, Y. Zhang, B. Zhu, X.W. Sun, and H.V. Demir, Appl. Phys. Lett. 104, 1028 (2014).

    Google Scholar 

  21. J. Piprek, T. Katona, S.P. DenBaars, and S. Li, Proc. SPIE 5366, 127 (2004).

    Article  Google Scholar 

  22. V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. Lett. 80, 1204 (2002).

    Article  Google Scholar 

  23. D.M. Caughey and R.E. Thomas, Proc. IEEE 55, 2192 (2005).

    Article  Google Scholar 

  24. I. Vurgaftman, J.R. Meyer, and L.R. RamMohan, J. Appl. Phys. 89, 5815 (2001).

    Article  Google Scholar 

  25. Y.A. Yin, N. Wang, G. Fan, and Y. Zhang, Superlattices Microstruct. 76, 149 (2014).

    Article  Google Scholar 

  26. K. Tian, Q. Chen, C. Chen, M. Fang, L. Li, and Y. Zhang, Phys. Status Solidi Rapid Res. Lett. 12, 1700346 (2018).

    Article  Google Scholar 

  27. H. Zhao, G. Liu, J. Zhang, J.D. Poplawsky, V. Dierolf, and N. Tansu, Opt. Express 19, A991 (2001).

    Article  Google Scholar 

  28. J. Piprek and Z.M. Simon Li, Appl. Phys. Lett. 102, 1771 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yian Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yin, Y. & Chen, X. Improvement of Output Power of AlGaN-Based Ultraviolet Light Emitting Diodes with Sawtooth Barriers. J. Electron. Mater. 48, 4330–4334 (2019). https://doi.org/10.1007/s11664-019-07200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07200-y

Keywords