Abstract
To investigate the effect of the tracer on the fluid flow in the water model, a mathematical model which involves in solute buoyancy is developed to describe the flow field in a single-strand tundish water model. The numerical results show that the tracer solute buoyancy has a great effect on the flow state in the water model, and the RTD curve by saturated KCl solution tracer is closer to the ideal RTD curve than that by saturated NaCl solution tracer. With the decrease of the saturated KCl solution volume or mass concentration, the RTD curves change from the double-peak RTD curve to the multi-peak RTD curve and then to the single-peak RTD curve. The dimensionless tracer number Tr is proposed to analyze the effect of solute buoyancy on the flow field, and its distribution is similar to the tracer mass concentration distribution. The dimensionless tracer parameter number Dtp is proposed to regulate the parameters of the tracer. For the water model, KCl tracer is better than NaCl tracer, and Dtp < 4.44 \(\times\) 10-5 can be applied to determine the KCl tracer parameter. In the industry production case, when Dtp < 1.18 × 10-5, the effect of Ni on flow field can be ignored.





















Similar content being viewed by others
References
Y. Sahai: Metall. Trans. B., 2016, vol. 47, pp. 2095–106. .
D. Mazumdar: Steel Res. Int., 2019, vol. 90, p. 1800279. .
C. Yao, M. Wang, R.X. Zheng, M.X. Pan, J.Y. Rao, and Y.P. Bao: Metals., 2020, vol. 10, p. 1111. .
X.G. Ai, D. Han, S.L. Li, H.B. Zeng, and H.Y. Li: J. Iron Steel Res. Int., 2020, vol. 27, pp. 1035–44. .
S.P. Patil and N.N. Viswanathan: Trans. Indian Inst. Met., 2021, vol. 74, pp. 369–79. .
J.R.D. Rocha, E.E.B. de Souza, F. Marcondes, and J.A. de Castro: J. Mater. Res. Technol., 2019, vol. 8, pp. 4209–20. .
R. Mishra and D. Mazumdar: Trans. Indian Inst. Met., 2019, vol. 72, pp. 889–98. .
Q. Wang, Y. Liu, A. Huang, W. Yang, H.Z. Gu, and G.Q. Li: Metall. Trans. B., 2020, vol. 51, pp. 276–92. .
H. Lei, B. Yang, Q. Bi, Y.Y. Xiao, S.F. Chen, and C.Y. Ding: ISIJ Int., 2019, vol. 59, pp. 1811–9. .
X.Y. Wang, D.T. Zhao, S.T. Qiu, and Z.S. Zou: ISIJ Int., 2017, vol. 57, pp. 1990–9. .
H.T. Ling, R. Xu, H.J. Wang, L.Z. Chang, and S.T. Qiu: ISIJ Int., 2020, vol. 60, pp. 499–508. .
K. Morales-Higa, R.I.L. Guthrie, M. Isac, and R.D. Morales: Metall. Trans. B., 2013, vol. 44, pp. 63–79. .
Q. Fang, H. Zhang, R.H. Luo, C. Liu, Y. Wang, and H.W. Ni: J. Mater. Res. Technol., 2020, vol. 9, pp. 347–63. .
X.F. Qin, C.G. Cheng, Y. Li, C.M. Zhang, J.L. Zhang, and Y. Jin: Metals., 2019, vol. 9, p. 225. .
X.F. Su, Y.L. Ji, J.H. Liu, Y. He, S.B. Shen, and H. Cui: Steel Res. Int., 2018, vol. 89, p. 1800085. .
A. Braun, M. Warzecha, and H. Pfeifer: Metall. Mater. Trans. B., 2010, vol. 41, pp. 549–59. .
P.Y. Ni, D.X. Wang, L.T.I. Jonsson, M. Ersson, T.A. Zhang, and P.G. Jonsson: Metall. Mater. Trans. B., 2017, vol. 48, pp. 2695–706. .
J. Huang, Z.G. Yuan, S.Y. Shi, B.F. Wang, and C. Liu: Metals., 2019, vol. 9, p. 239. .
B. Yang, H. Lei, Q. Bi, J.M. Jiang, H.W. Zhang, Y. Zhao, and J.A. Zhou: Steel Res. Int., 2018, vol. 89, p. 1800173. .
G.C. Wang, M.F. Yun, C.M. Zhang, and G.D. Xiao: ISIJ Int., 2015, vol. 55, pp. 984–92. .
T. Merder: Ironmak. Steelmak., 2016, vol. 43, pp. 758–68. .
S. Chang, L.C. Zhong, and Z.S. Zou: ISIJ Int., 2015, vol. 55, pp. 837–44. .
A. Kumar, S.C. Koria, and D. Mazumdar: ISIJ Int., 2007, vol. 47, pp. 1618–24. .
X.M. Yang, S.X. Liu, J.S. Jiao, M. Zhang, J.P. Duan, L. Li, and C.Z. Liu: Steel Res. Int., 2012, vol. 83, pp. 269–87. .
L.C. Zhong, B.K. Li, Y.X. Zhu, R.G. Wang, W.Z. Wang, and X.J. Zhang: ISIJ Int., 2007, vol. 47, pp. 88–94. .
A. Tripathi, A. Kumar, S.K. Ajmani, J.B. Singh, and V.V. Mahashabde: Steel Res. Int., 2015, vol. 86, pp. 1558–73. .
L. Neves and R.P. Tavares: Ironmak. Steelmak., 2017, vol. 44, pp. 559–67. .
A. Vassilicos, and A.K. Sinha: 10th Process Technol. Conf. Proc., Toronto, I&S Society, April 5–8, 1992, pp. 187–207.
C. Damle and Y. Sahai: ISIJ Int., 1995, vol. 35, pp. 163–9. .
C. Chen, G.G. Cheng, H.B. Sun, Z.B. Hou, X.C. Wang, and J.Q. Zhang: Steel Res. Int., 2012, vol. 83, pp. 1141–51. .
D.M. Krashnavtar: JOM., 2018, vol. 70, pp. 2139–47. .
H. Zhang, Q. Fang, S.Y. Deng, C. Liu, and H.W. Ni: Steel Res. Int., 2019, vol. 90, p. 1800497. .
M.I.H. Siddiqui and P.K. Jha: Steel Res. Int., 2016, vol. 87, pp. 733–44. .
E. Cussler: Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press, New York, 2009, pp. 165–6.
A. Ghaffari and A. Rahbar-Kelishami: J. Mol. Liq., 2013, vol. 187, pp. 238–45. .
C. Chen, L. Jonsson, A. Tilliander, G. Cheng, and P. Jonsson: Metall. Mater. Trans. B., 2015, vol. 46, pp. 169–90. .
R. Issa: J. Comput. Phys., 1986, vol. 62, pp. 40–65. .
H. Lei: Metall. Mater. Trans. B., 2015, vol. 46, pp. 2408–13. .
D. Mazumdar: Metall. Mater. Trans. B., 2021, vol. 52, pp. 23–9. .
D. Mazumdar, A. Agnihotri, M. Karnik, S. Mehta, S. Misra, and D. Satish: Trans. Indian Inst. Met., 2020, vol. 73, pp. 3079–93. .
A. Cwudzinski: Steel Res. Int., 2015, vol. 86, pp. 972–83. .
A. Cwudzinski: Steel Res. Int., 2014, vol. 85, pp. 902–17. .
A. Cwudzinski: Arch. Metall. Mater., 2014, vol. 59, pp. 1249–56. .
S. Joo, J.W. Han, and R.I.L. Guthrie: Metall. Mater. Trans. B., 1993, vol. 24, pp. 767–77. .
Acknowledgments
The research is supported by the Fundamental Research Funds for the Central Universities (N2109003).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted on January 19, 2021; accepted July 27, 2021.
Rights and permissions
About this article
Cite this article
Ding, C., Lei, H., Niu, H. et al. Effects of Tracer Solute Buoyancy on Flow Behavior in a Single-Strand Tundish. Metall Mater Trans B 52, 3788–3804 (2021). https://doi.org/10.1007/s11663-021-02292-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11663-021-02292-6