[go: up one dir, main page]

Skip to main content
Log in

Effects of Simultaneous Static and Traveling Magnetic Fields on the Molten Steel Flow in a Continuous Casting Mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The drawback of steel fluid flow phenomena for a continuous casting mold under an electromagnetic stirrer with a traveling magnetic field is the resulting severe meniscus fluctuations due to the high-velocity and excessive downward flow in the casting direction. This can result in slab surface defects due to mold flux or inclusion entrainment. To inhibit these defects in the as-cast steel products, the implementation of braking forces using static magnetic fields in combination with a traveling magnetic field was studied in the current study. The numerical results of the fluid flow in the mold under a combined traveling and static magnetic field operation show not only 50 pct lower downward flow speed, but also more enhanced rotational flow to improve washing effects. The numerical results were validated in commercial-scale operations. The results suggest the optimized range of the ratio between the traveling and static magnetic flux densities is 65 to 75 pct to ensure steel quality improvements; this range maintains a balance between the fluid forces from the jet flow and the magnetic forces in the mold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

a CG :

Length from the rotation axis to the center of weight of the rod (m)

α :

Tilted angle of the rod (deg)

B :

Magnetic flux density (Tesla)

B 0 :

External magnetic flux density (Tesla)

b :

Induced magnetic flux density (Tesla)

C D :

Drag coefficient (–)

D :

Initial length of the rod immersed from the meniscus (m)

D proj :

Immersed depth in the vertical direction of the tilted rod (m)

D α :

Immersed depth of the tilted rod (m)

ε :

Energy dissipation rate per mass (m2 s−3)

F :

Lorentz force (N m−3)

F im :

Fluid force of impinged jet flow (N m−3)

F st :

Lorentz force of static magnetic fields (N m−3)

F tr :

Lorentz force of traveling magnetic fields (N m−3)

g :

Gravity acceleration (m s−2)

H :

Magnetic field (inductance) (Wb A−1)

J :

Current density (A m−2)

K :

Turbulence kinetic energy per mass (m2 s−2)

L :

Total length of the rod (m)

M :

Weight of the rod (kg)

μ :

Viscosity (kg m−1 s−1)

μ t :

Turbulent viscosity (kg m−1 s−1)

μ m :

Magnetic permeability (H m−1)

O :

Rotation axis point of the paddle rod

p :

Hydrostatic pressure (N m−2)

r 0 :

Radius of the rod (m)

ρ :

Density of the fluid material (kg m−3)

ρ steel :

Density of steel (kg m−3)

S :

Source term

σ :

Electrical conductivity (Ω−1)

σ k :

Prandtl number for the transport of turbulence kinetic energy

σ ε :

Prandtl number for transport of the turbulent dissipation rate

t :

Time (s)

u :

Relative velocity between conductor and magnetic fields (m s−1)

u i, j :

Velocity vector (m s−1)

v :

Velocity of fluid flow (m s−1)

x i, j :

Length vector (m)

References

  1. M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno: ISIJ Int., 2000, Vol. 40, pp. 685-91.

    Article  CAS  Google Scholar 

  2. M. De Doncker and J.-F. Domgin, Metall. Res. Technol, 2015, Vol. 112, No.402, pp. 1-4.

    Google Scholar 

  3. J. Kubota, N. Kubo, T. Ishii, M. Suzuki, N. Aramaki, and R. Nishimachi: NKK Technical Review, 2001, No. 85, pp. 1-9.

    Google Scholar 

  4. N. Kubo, J. Kubota, M. Suzuki and T. Ishii: ISIJ Int., 2007, Vol. 47, pp. 988-95.

    Article  CAS  Google Scholar 

  5. S. Kunstreich: Millenium Steel, 2014, pp. 64–9.

  6. O. Sjoden and M. Venini: Metalurgija, 2007, Vol. 13, pp. 11-20.

    CAS  Google Scholar 

  7. Vector fields Limited: OPERA 3D-User Guide 1, England, 2004, pp. 171–84.

  8. D.-S. Kim. W.-S. Kim and K.-H. Cho: ISIJ Int., 2000, Vol. 40, 670-76.

    Article  CAS  Google Scholar 

  9. M. Iguchi and N. Kasai: Metall. Mater. Trans. B, 2000, Vol. 31B, 453-60.

    Article  CAS  Google Scholar 

  10. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, USA, 1980, pp. 11-137.

    Book  Google Scholar 

  11. P. A. Davidson: An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, UK, 2001, pp.1-116.

    Google Scholar 

  12. L. Zhang and B.G. Thomas: Steelmaking National Symposium Nov. 26–28, Morelia, Mexico, 2003, pp. 184–96.

  13. Fluent Inc.: FLUENT6.3-Manual, USA, 2003, pp. 1–740.

  14. B.G. Thomas and R. Chaudhary: Proceedings of the 6th International Conference on Electromagnetic Processing of Materials Oct. 19–23, Dresden, Germany, 2009. pp. 9–14.

  15. E. Takeuchi, T. Toh, H. Harada, M. Zeze, H. Tanaka, M. Hojo, T. Ishii, and K. Shigematsu: Nippon Steel Technical Report, 1994, No. 61, pp. 29–37.

  16. K. Takatani, Y. Tanizawa, H. Mizukami and K. Nishimura: ISIJ Int., 2001, Vol. 41, 1252-61.

    Article  CAS  Google Scholar 

  17. L. Zhang and Q. Wang: TMS2015 Conference Proceedings Mar. 15–19, Florida, USA, 2015, pp. 1253–62.

  18. B. Rietow and B.G. Thomas: AISTech 2008 Conference Proceedings May 5–8, Pittsburgh, USA, 2008, pp. 75–86.

  19. M.B. Assar, P.H. Dauby, and G.D. Lawson: Proceedings of the 83rd Steelmaking Conference Mar. 26–29, Pittsburgh, USA, 2000, pp. 397–411.

  20. P.H. Dauby: Iron and Steel Technology, 2011, Vol. 8, pp. 152-160.

    Google Scholar 

  21. K. Okazawa, T. Toh, J. Fukuda, T. Kawase and M. Toki: ISIJ Int., 2001, Vol. 41, pp. 851-58.

    Article  CAS  Google Scholar 

  22. H. Yamamura, T. Kajitani, J. Nakashima, N. Yamasaki, and S. Mineta: Nippon Steel Technical Report, 2013, No. 104, pp. 54–61.

  23. H. Nakata, T. Inoue, H. Mori, K. Ayata, T. Murakami and T. Kominami: ISIJ Int., 2002, Vol. 42, pp. 264–72.

    Article  CAS  Google Scholar 

  24. N. Junji and K. Akihito: Nippon Steel Technical Report, 2002, No. 86, pp. 61–67.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Sohn.

Additional information

Manuscript submitted January 11, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SW., Cho, HJ., Jin, SY. et al. Effects of Simultaneous Static and Traveling Magnetic Fields on the Molten Steel Flow in a Continuous Casting Mold. Metall Mater Trans B 49, 2757–2769 (2018). https://doi.org/10.1007/s11663-018-1356-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1356-y

Keywords

Navigation