Abstract
Simulated microgravity (SM) has been implicated in affecting diverse cellular pathways. Although there is emerging evidence that SM can alter cellular functions, its effect in cancer metastasis has not been addressed. Here, we demonstrate that SM inhibits migration, gelatinolytic activity, and cell proliferation of an A549 human lung adenocarcinoma cell line in vitro. Expression of antigen MKI67 and matrix metalloproteinase-2 (MMP2) was reduced in A549 cells stimulated by clinorotation when compared with the 1×g control condition, while overexpression of each gene improves ability of proliferation and migration, respectively, under SM conditions. These findings suggest that SM reduced the metastatic potential of human lung adenocarcinoma cells by altering the expression of MKI67 and MMP2, thereby inhibiting cell proliferation, migration, and invasion, which may provide some clues to study cancer metastasis in the future.






Similar content being viewed by others
References
Barjaktarovic Z.; Nordheim A.; Lamkemeyer T.; Fladerer C.; Madlung J.; Hampp R. Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J. Exp. Bot. 58: 4357–4363; 2007.
Buravkova L. B.; Rykova M. P.; Grigorieva V.; Antropova E. N. Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro. J. Gravit. Physiol.: A Journal of the International Society for Gravitational Physiology 11: P177–P180; 2004.
Chaffer C. L.; Weinberg R. A. A perspective on cancer cell metastasis. Science 331: 1559–1564; 2011.
Dai Z. Q.; Wang R.; Ling S. K.; Wan Y. M.; Li Y. H. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells. Cell Prolif. 40: 671–684; 2007.
Dome B.; Somlai B.; Tamasy A.; Peter L.; Tovari J.; Horvath A.; Timar J. Prognosis and invasion marker expression of cutaneous melanoma. Metastasis-associated genes (nm23, CD44v3, MMP2. Orv. Hetil. 140: 235–240; 1999.
Fidler I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3: 453–458; 2003.
Gerathewohl S. J. Physics and psychophysics of weightlessness; visual perception. J. Aviat. Med. 23: 373–395; 1952.
Giard D. J.; Aaronson S. A.; Todaro G. J.; Arnstein P.; Kersey J. H.; Dosik H.; Parks W. P. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51: 1417–1423; 1973.
Grimm D.; Bauer J.; Kossmehl P.; Shakibaei M.; Schoberger J.; Pickenhahn H.; Schulze-Tanzil G.; Vetter R.; Eilles C.; Paul M. et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J.: Official Publication of the Federation of American Societies for Experimental Biology 16: 604–606; 2002.
Infanger M.; Kossmehl P.; Shakibaei M.; Bauer J.; Kossmehl-Zorn S.; Cogoli A.; Curcio F.; Oksche A.; Wehland M.; Kreutz R. et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res. 324: 267–277; 2006.
Ivanova K.; Eiermann P.; Tsiockas W.; Hauslage J.; Hemmersbach R.; Gerzer R. Natriuretic peptide-sensitive guanylyl cyclase expression is down-regulated in human melanoma cells at simulated weightlessness. Acta Astronaut. 68: 652–655; 2011.
Kacena M. A.; Todd P.; Gerstenfeld L. C.; Landis W. J. Experiments with osteoblasts cultured under varying orientations with respect to the gravity vector. Cytotechnology 39: 147–154; 2002.
Kang C. Y.; Zou L.; Yuan M.; Wang Y.; Li T. Z.; Zhang Y.; Wang J. F.; Li Y.; Deng X. W.; Liu C. T. Impact of simulated microgravity on microvascular endothelial cell apoptosis. Eur. J. Appl. Physiol. 111: 2131–2138; 2011.
Kondratiev S.; Gnepp D. R.; Yakirevich E.; Sabo E.; Annino D. J.; Rebeiz E.; Laver N. V. Expression and prognostic role of MMP2, MMP9, MMP13, and MMP14 matrix metalloproteinases in sinonasal and oral malignant melanomas. Hum. Pathol. 39: 337–343; 2008.
Martin B.; Paesmans M.; Mascaux C.; Berghmans T.; Lothaire P.; Meert A. P.; Lafitte J. J.; Sculier J. P. Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis. Br. J. Cancer 91: 2018–2025; 2004.
Meloni M. A.; Galleri G.; Camboni M. G.; Pippia P.; Cogoli A.; Cogoli-Greuter M. Modeled microgravity affects motility and cytoskeletal structures. J. Gravit. Physiol.: A Journal of the International Society for Gravitational Physiology 11: P197–P198; 2004.
Pantel K.; Brakenhoff R. H. Dissecting the metastatic cascade. Nat. Rev. Cancer 4: 448–456; 2004.
Pietsch J.; Bauer J.; Egli M.; Infanger M.; Wise P.; Ulbrich C.; Grimm D. The effects of weightlessness on the human organism and mammalian cells. Curr. Mol. Med. 11: 350–364; 2011.
Protzel C.; Knoedel J.; Zimmermann U.; Woenckhaus C.; Poetsch M.; Giebel J. Expression of proliferation marker Ki67 correlates to occurrence of metastasis and prognosis, histological subtypes and HPV DNA detection in penile carcinomas. Histol. Histopathol. 22: 1197–1204; 2007.
Qian A. R.; Zhang W.; Xie L.; Weng Y.; Yang P.; Wang Z.; Hu L.; Xu H.; Tian Z.; Shang P. Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7. Acta Astronaut. 63: 947–958; 2008.
Qu L.; Chen H.; Liu X.; Bi L.; Xiong J.; Mao Z.; Li Y. Protective effects of flavonoids against oxidative stress induced by simulated microgravity in SH-SY5Y cells. Neurochem. Res. 35: 1445–1454; 2010.
Sethi N.; Kang Y. Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nat. Rev. Cancer 11: 735–748; 2011.
Shi F.; Wang Y. C.; Zhao T. Z.; Zhang S.; Du T. Y.; Yang C. B.; Li Y. H.; Sun X. Q. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS One 7: e40365; 2012.
Soomro I. N.; Holmes J.; Whimster W. F. Predicting prognosis in lung cancer: use of proliferation marker, Ki67 monoclonal antibody. JPMA J. Pakistan Med. Assoc. 48: 66–69; 1998.
Sozzi G.; Conte D.; Leon M.; Ciricione R.; Roz L.; Ratcliffe C.; Roz E.; Cirenei N.; Bellomi M.; Pelosi G. et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J. Clin. Oncol.: Official Journal of the American Society of Clinical Oncology 21: 3902–3908; 2003.
Sundaresan A.; Pellis N. R. Cellular and genetic adaptation in low-gravity environments. Ann. N. Y. Acad. Sci. 1161: 135–146; 2009.
Takeda M.; Magaki T.; Okazaki T.; Kawahara Y.; Manabe T.; Yuge L.; Kurisu K. Effects of simulated microgravity on proliferation and chemosensitivity in malignant glioma cells. Neurosci. Lett. 463: 54–59; 2009.
Vassy J.; Portet S.; Beil M.; Millot G.; Fauvel-Lafeve F.; Gasset G.; Schoevaert D. Weightlessness acts on human breast cancer cell line MCF-7. Adv. Space Res. 32: 1595–1603; 2003.
Vassy J.; Portet S.; Beil M.; Millot G.; Fauvel-Lafeve F.; Karniguian A.; Gasset G.; Irinopoulou T.; Calvo F.; Rigaut J. P. et al. The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. FASEB J.: Official Publication of the Federation of American Societies for Experimental Biology 15: 1104–1106; 2001.
Vihinen P.; Kahari V. M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer J. Int. Du Cancer 99: 157–166; 2002.
Walther I.; Pippia P.; Meloni M. A.; Turrini F.; Mannu F.; Cogoli A. Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett. 436: 115–118; 1998.
Wang Y.; An L.; Jiang Y.; Hang H. Effects of simulated microgravity on embryonic stem cells. PLoS One 6: e29214; 2011.
Yamazaki T.; Yoshimoto M.; Nishiyama Y.; Okubo Y.; Makimura K. Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat. Microbiol. Immunol. 56: 441–446; 2012.
Acknowledgments
This work was supported by the Key Pre-Research Foundation of Military Equipment of China (grant no. 9140A26040312JB10078), the Key Program of Medical Research in the Military “12th 5-year Plan”, China (no. BWS12J046), the China Postdoctoral Science Foundation (grant no. 201104776), the Defense Medical Fund of China (grant no. 06Z048), the State Key Laboratory of Space Medicine Fundamentals and Application, the General Financial Grant from the China Postdoctoral Science Foundation (no. 2012M521873), and the China Astronaut Research and Training Center (grant nos. SMFA11A01 and SMFA11K02).
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor: T. Okamoto
De Chang and Huiwen Xu contributed equally to this work.
Rights and permissions
About this article
Cite this article
Chang, D., Xu, H., Guo, Y. et al. Simulated microgravity alters the metastatic potential of a human lung adenocarcinoma cell line. In Vitro Cell.Dev.Biol.-Animal 49, 170–177 (2013). https://doi.org/10.1007/s11626-013-9581-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11626-013-9581-9