Abstract
Removal of salt and pepper noise has been one of the most interesting researches in the field of image preprocessing tasks; it has two simultaneous stringent demands: the suppression of impulses and the preservation of fine details. To address this problem, a scheme based on nonlinear filters is proposed; it consists of the introduction of a redescending M-estimator within the modified nearest neighbor filter. In order to analyze all pixels in the neighborhood, as well as to reduce the magnitude of the existing impulses, a redescending M-estimator is used; the remaining pixels are processed by the modified nearest neighbor filter to obtain the best estimation of a noise-free pixel. The impulsive suppression is applied on the entire image by using a sliding window; the local information obtained by this one also allows to calculate the thresholds that characterize the influence function tested in the redescending M-estimator. To suppress high density fixed-value impulse noise in large-size grayscale images, the proposal is implemented on a heterogeneous CPU–GPU architecture. The noise reduction and the processing time of the proposed approach are evaluated by extensive simulations; its effectiveness is verified by quantitative and qualitative results.
Similar content being viewed by others
References
Ahmed, F., Das, S.: Removal of high-density salt-and-pepper noise in images with an iterative adaptive fuzzy filter using alpha-trimmed mean. IEEE Trans. Fuzzy Syst. 22(5), 1352–1358 (2014)
Ali, A., Qadir, M.F.: A modified m-estimator for the detection of outliers. Pak. J. Stat. Oper. Res. 1(1), 49–64 (2005)
Andrews, D.F., Hampel, F.R.: Robust Estimates of Location: Survey and Advances. Princeton University Press, Princeton (2015)
Boncelet, C.: Image noise models. In: Bovik, A.C. (ed.) The Essential Guide to Image Processing, 2nd edn, pp. 143–167. Academic Press, Boston (2009)
Chen, C.L.P., Liu, L., Chen, L., Tang, Y.Y., Zhou, Y.: Weighted couple sparse representation with classified regularization for impulse noise removal. IEEE Trans. Image Process. 24(11), 4014–4026 (2015)
Cheng, J., Grossman, M., McKercher, T.: Professional Cuda C Programming. Wiley, New York (2014)
Chou, H.-H., Hsu, L.-Y.: A noise-ranking switching filter for images with general fixed-value impulse noises. Sig. Process. 106, 198–208 (2015)
Chou, H.-H., Hsu, L.-Y., Hwai-Tsu, H.: Turbulent-pso-based fuzzy image filter with no-reference measures for high-density impulse noise. IEEE Trans. Cybern. 43(1), 296–307 (2013)
Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical image processing on the gpu—past, present and future. Med. Image Anal. 17(8), 1073–1094 (2013)
Frigui, H., Krishnapuram, R.: A robust algorithm for automatic extraction of an unknown number of clusters from noisy data. Pattern Recogn. Lett. 17(12), 1223–1232 (1996)
Gallegos-Funes, F.J., Ponomaryov, V.I.: Real-time image filtering scheme based on robust estimators in presence of impulsive noise. Real-Time Imaging 10(2), 69–80 (2004)
Gupta, V., Chaurasia, V., Shandilya, M.: Random-valued impulse noise removal using adaptive dual threshold median filter. J. Vis. Commun. Image Represent. 26, 296–304 (2015)
Habib, M., Hussain, A., Rasheed, S., Ali, M.: Adaptive fuzzy inference system based directional median filter for impulse noise removal. AEU-Int. J. Electron. Commun. 70(5), 689–697 (2016)
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Hampel, F.R., Ronchetti, E.M., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions. Wiley, New York (1986)
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions, vol. 114. Wiley, New York (2011)
Hodges Jr., J.L., Lehmann, E.L.: Estimates of location based on rank tests. Ann. Math. Stat. 34, 598–611 (1963)
Hosseini, H., Marvasti, F.: Fast restoration of natural images corrupted by high-density impulse noise. EURASIP J. Image Video Process. 2013(1), 1–7 (2013)
Hosseini, H., Hessar, F., Marvasti, F.: Real-time impulse noise suppression from images using an efficient weighted-average filtering. IEEE Signal Process. Lett. 22(8), 1050–1054 (2015)
Huber, P.J.: The basic types of estimates. In: Huber, P.J. (ed.) Robust Statistics, pp. 43–72. Wiley, Hoboken (1981)
Ibrahim, H., Neo, K.C., Teoh, S.H., Ng, T.F., Chieh, D.C.J., Hassan, N.F.N.: Impulse noise model and its variations. Int. J. Comput. Electr. Eng. 4(5), 647 (2012)
Li, Y., Sun, J., Luo, H.: A neuro-fuzzy network based impulse noise filtering for gray scale images. Neurocomputing 127, 190–199 (2014)
Li, Z., Cheng, Y., Tang, K., Yong, X., Zhang, D.: A salt and pepper noise filter based on local and global image information. Neurocomputing 159, 172–185 (2015)
Malinski, L., Smolka, B.: Fast adaptive switching technique of impulsive noise removal in color images. J. Real-Time Image Process. (2016). https://doi.org/10.1007/s11554-016-0599-6
Maronna, R.A.R.D., Martin, D., Yohai, V.: Robust Statistics. Wiley, Chichester (2006)
Mújica-Vargas, D., Gallegos-Funes, F.J., Rosales-Silva, A.J.: A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recogn. Lett. 34(4), 400–413 (2013)
Mújica-Vargas, D., Gallegos-Funes, F.J., Rosales-Silva, A.J., de Jesús Rubio, J.: Robust c-prototypes algorithms for color image segmentation. EURASIP J. Image Video Process. 2013(1), 1 (2013)
Owens, J., Luebke, D.: Intro to parallel programming. http://www.nvidia.com/object/cuda_home_new.html/. [Online] Accessed 16 June 2016
Pitas, I., Venetsanopoulos, A.N.: Median filters. In: Pitas, I., Venetsanopoulos, A.N. (eds.) Nonlinear Digital Filters, pp. 63–116. Springer, Berlin (1990)
Pitas, I., Venetsanopoulos, A.N.: Order statistics in digital image processing. Proc. IEEE 80(12), 1893–1921 (1992)
Poularikas, A.D.: Handbook of Formulas and Tables for Signal Processing. CRC Press, London (1998)
Sánchez, M.G., Vidal, V., Bataller, J., Arnal, J.: A parallel method for impulsive image noise removal on hybrid CPU/GPU systems. Proc. Comput. Sci. 18, 2504–2507 (2013)
Shevlyakov, G., Morgenthaler, S., Shurygin, A.: Redescending m-estimators. J. Stat. Plan. Inference 138(10), 2906–2917 (2008)
Teoh, S.H., Ibrahim, H.: Variations on impulse noise model in digital image processing field: a survey on current research inclination. Int. J. Innov. Manag. Technol. 4(4), 393 (2013)
Tukey, J.W.: A survey of sampling from contaminated distributions. Contrib. Prob. Stat. 2, 448–485 (1960)
Ullah, I., Qadir, M.F., Ali, A.: Insha’s redescending m-estimator for robust regression: a comparative study. Pak. J. Stat. Oper. Res. 2(2), 135–144 (2006)
Vijaykumar, V.R., Vanathi, P.T., Kanagasabapathy, P., Ebenezer, D.: Robust statistics based algorithm to remove salt and pepper noise in images. Int. J. Inf. Commun. Eng. 5(3), 164–173 (2009)
Zhang, C., Wang, K.: A switching median-mean filter for removal of high-density impulse noise from digital images. Opt. Int. J. Light Electron Opt. 126(9), 956–961 (2015)
Acknowledgements
The authors are grateful with the editor and with the reviewers for their valuable comments and insightful suggestions, which can help to improve this research significantly. The authors thank to CONACYT as well as Tecnológico Nacional de México (TecNM)/Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET) for their financial support through the project 5688.16-P named "Sistema para procesamiento de imágenes de resonancia magnética para segmentación 3D y visualización de tejidos cerebrales".
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mújica-Vargas, D., de Jesús Rubio, J., Kinani, J.M.V. et al. An efficient nonlinear approach for removing fixed-value impulse noise from grayscale images. J Real-Time Image Proc 14, 617–633 (2018). https://doi.org/10.1007/s11554-017-0746-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-017-0746-8