Abstract
We present a tool for video augmentation in real-time, which we name the augmentation virtual screen (AVScreen). AVScreen is useful for developing advertisements, commercials, music videos, movies, etc. The main challenges for augmenting videos, in contrast to fixed images, is that moving objects in the foreground may occlude the region to be augmented in the background and that the composition can be affected by camera movements. Therefore, we use a procedure for foreground–background video segmentation in order to deal with such occlusions. Comparisons with foreground–background video segmentation methods of the state of the art in both accuracy and computational efficiency support our choice: we reduce around 70 % of the segmentation error in a popular benchmark database and achieve real-time performance. Moreover, a new stabilization method to augment unstable camera videos is presented. For augmenting video shots, we present an efficient graph-based method for panorama (mosaic) computation. The real-time performance is reached by implementing high computational demanding procedures in GPU. The frame rate of our method is 18 frames per second for a video size of 640 × 480 pixels.












Similar content being viewed by others
Notes
Corner detection function “goodFeaturesToTrack” in the OpenCV library [32].
Lucas-Kanade’s optical flow method implemented in the OpenCV library (function “calcOpticalFlowPyrLK”).
RANSAC method for homography calculation is implemented in the OpenCV library (function “findHomography”).
A real-time implementation of the Graph Cut algorithm is available in the NVIDIA NPP library.
References
Ahn, J.H., Byun, H.: Accurate foreground extraction using graph cut with trimap estimation. In: Chang, L.W., Lie, W.N. (eds.) Advances in image and video technology, lecture notes in Computer Science, vol. 4319, pp. 1185–1194. Springer Berlin, Heidelberg (2006)
Chen, X., Li, Q., Li, X., Zhao, Q.: Video motion stitching using trajectory and position similarities. SCIENCE CHINA Inf. Sci. 55(3):600–614 (2012)
Colombari, A., Fusiello, A., Murino, V.: Segmentation and tracking of multiple video objects. Pattern Recogn. 40(4):1307–1317 (2007)
Douze, M., Charvillat, V.: Real-time generation of augmented video sequences by background tracking: research articles. Comput. Animat. Virtual Worlds 17(5):537–550 (2006)
Fernández, C., Baiget, P., Roca, F.X., Gonzààlez, J.: Augmenting video surveillance footage with virtual agents for incremental event evaluation. Pattern Recogn. Lett. 32(6):878–889 (2011)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. 6(6):721–741 (1984)
Hartley, A., Zisserman, A.: Multiple view geometry in computer vision (2 ed.). Cambridge University Press, Cambridge (2006)
Hermans, C., Vanaken, C., Mertens, T., Reeth, F.V., Bekaert, P.: Augmented panoramic video. Comput. Graph. Forum 27(2):281–290 (2008)
Hernandez-Lopez, F.J.: AVScreen: a real-time video augmentation method. Website (2013). http://www.cimat.mx/fcoj23/AVScreenProject/AVSCREEN.html
Hernandez-Lopez, F.J., Rivera, M.: Binary segmentation of video sequences in real time. In: MICAI, pp. 163–168. IEEE Proceedings (2010)
Hernandez-Lopez, F.J., Rivera, M.: Change detection by probabilistic segmentation from monocular view. Mach. Vision Appl. (2012) (to appear)
Juan, O., Keriven, R.: Trimap segmentation for fast and user-friendly alpha matting. In: VLSM, pp. 186–197. Springer-Verlag (2005)
Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bilayer segmentation of binocular stereo video. In: Proceedings of CVPR, pp. 1186–1193 (2005)
Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Probabilistic fusion of stereo with color and contrast for bi-layer segmentation. IEEE Trans. Pattern Anal. Machine Intell. 28(9):1480–1492 (2006)
Lee, S., Yun, ID., Lee, S.U.: Robust bilayer video segmentation by adaptive propagation of global shape and local appearance. J. Visual Commun. Image Represent. 21(7):665–676 (2010)
Li, S.: Markov random field modeling in image analysis. Springer-Verlag, Tokyo (2001)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of IJCAI, pp. 121–130 (1981)
Marroquin, J.L., Velasco, F.A., Rivera, M., Nakamura, M.: Gauss-markov measure field models for low-level vision. IEEE Trans. Pattern Anal. Mach. Intell. 23(4):337–348 (2001)
Marzotto, R., Fusiello, A., Murino, V.: High resolution video mosaicing with global alignment. In: CVPR (1), pp. 692–698 (2004)
Microsoft: Microsoft research. Website (2011). http://research.microsoft.com/vision/cambridge/i2i/DSWeb.htm
Nocedal, J., Wright, S.J.: Numerical optimization, series in operations research and financial engineering (2006)
NVIDIA: Cuda zone. Website (2012). http://www.nvidia.com/object/cuda_get.html
Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6):1389–1401 (1957)
Rivera, M., Dalmau, O.: Variational viewpoint of the quadratic markov measure field models: theory and algorithms. IEEE Trans. Image Process. 21(3):1246–1257 (2012)
Rivera, M., Dalmau, O., Tago, J.: Image segmentation by convex quadratic programming. In: Proceedings of ICPR, pp. 1–5 (2008)
Rother, C., Kolmogorov, V., Blake, A., "grabcut": interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3):309–314 (2004)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: Orb: an efficient alternative to sift or surf. In: ICCV, pp. 2564–2571. IEEE (2011)
Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’94), pp. 593–600 (1994)
Sun, J., Zhang, W., Tang, X., Shum, H.Y.: Background cut. In: Proceedings of ECCV, pp. 628–641 (2006)
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.A.: comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6):1068–1080 (2008)
Tang, Z., Miao, Z., Wan, Y., Jesse, F.F.: Foreground prediction for bilayer segmentation of videos. Pattern Recogn. Lett. 32(14):1720–1734 (2011)
Willowgarage: OpenCV. Website (2012). http://opencv.willowgarage.com/
Yin, P., Criminisi, A., Winn, J., Essa, I.: Bilayer segmentation of webcam videos using tree-based classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 33(1):30–42 (2011)
Acknowledgments
This work was supported in part by the CONACYT, Mexico (DSc. Scholarship to F.H. and grant 131369-Y to M.R.). The author thanks to the anonymous reviewers for their comments to improve the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Hernandez–Lopez, F.J., Rivera, M. AVScreen: a real-time video augmentation method. J Real-Time Image Proc 10, 453–465 (2015). https://doi.org/10.1007/s11554-013-0375-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-013-0375-9