[go: up one dir, main page]

Skip to main content
Log in

Automatic computation of electrode trajectories for Deep Brain Stimulation: a hybrid symbolic and numerical approach

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The optimal electrode trajectory is needed to assist surgeons in planning Deep Brain Stimulation (DBS). A method for image-based trajectory planning was developed and tested.

Methods

Rules governing the DBS surgical procedure were defined with geometric constraints. A formal geometric solver using multimodal brain images and a template built from 15 brain MRI scans were used to identify a space of possible solutions and select the optimal one. For validation, a retrospective study of 30 DBS electrode implantations from 18 patients was performed. A trajectory was computed in each case and compared with the trajectories of the electrodes that were actually implanted.

Results

Computed trajectories had an average difference of 6.45° compared with reference trajectories and achieved a better overall score based on satisfaction of geometric constraints. Trajectories were computed in 2 min for each case.

Conclusion

A rule-based solver using pre-operative MR brain images can automatically compute relevant and accurate patient-specific DBS electrode trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhami L, Coste-Manière E (2003) Optimal planning for minimally invasive surgical robots. IEEE Trans Rob Autom 19(5): 854–863

    Article  Google Scholar 

  2. Altrogge I, Kröger T, Preusser T, Büskens C, Pereira P, Schmidt D, Weihusen A, Peitgen H (2006) Towards optimization of probe placement for radio-frequency ablation. In: Proceedings of MICCAI’06, Springer LNCS, vol 4190, pp 486–493

  3. Baegert C, Essert-Villard C, Schreck P, Soler L, Gangi A (2007) Trajectory optimization for the planning of percutaneous radiofrequency ablation of hepatic tumors. Comput Aided Surg 12(2): 82–90

    PubMed  Google Scholar 

  4. Baegert C, Villard C, Schreck P, Soler L (2007) Multi-criteria trajectory planning for hepatic radiofrequency ablation. In: Proceedings of MICCAI’07, Springer LNCS, vol 4791, pp 584–592

  5. Baegert C, Villard C, Schreck P, Soler L (2007) Precise determination of regions of interest for hepatic RFA planning. In: Proceedings of medicine meets virtual reality (MMVR 15), vol 125. IOS Press, Amsterdam, pp 31–36

  6. Benabid A, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of parkinson’s disease. The Lancet Neurol 8(1): 67–81

    Article  Google Scholar 

  7. Benabid A, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao D, Laurent A, Gentil M, Perret J (1994) Acute and long-term effects of subthalamic nucleus stimulation in parkinson’s disease. Stereotact Funct Neurosurg 62: 76–84

    Article  PubMed  CAS  Google Scholar 

  8. Bergman H, Wichmann T, DeLong M (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249(4975): 1436–1438

    Article  PubMed  CAS  Google Scholar 

  9. Botsch M, Kobbelt L (2004) A remeshing approach to multiresolution modeling. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on geometry processing, pp 185–192

  10. Bourbakis N, Awad M (2003) A 3-D visualization method for image-guided brain surgery. IEEE Trans Syst Man Cybern Part B Cybern 33(5): 766–781

    Article  CAS  Google Scholar 

  11. Brunenberg E, Vilanova A, Visser-Vandewalle V, Temel Y, Ackermans L, Platel B, ter Haar Romeny B (2007) Automatic trajectory planning for deep brain stimulation: a feasibility study. In: Proceedings of MICCAI’07, Springer LNCS, vol 4791, pp 584–592

  12. Chaturvedi A, Butson CR, Lempka SF, Cooper SE, McIntyre CC (2010) Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions. Brain Stimul 3(2): 65–77

    Article  PubMed  Google Scholar 

  13. Cointepas Y, Mangin J, Garnero L, Poline J, Benali H (2001) BrainVISA: software platform for visualization and analysis of multi-modality brain data. NeuroImage 13(6):98–98. http://brainvisa.info/

    Google Scholar 

  14. Coupé P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27(4): 425–441

    Article  PubMed  Google Scholar 

  15. D’Haese PF, Cetinkaya E, Konrad PE, Kao C, Dawant BM (2005) Computer-aided placement of deep brain stimulators: from planning to intraoperative guidance. IEEE Trans Med Imaging 24(11): 1469–1478

    Article  PubMed  Google Scholar 

  16. Essert C, Haegelen C, Jannin P (2010) Automatic computation of electrodes trajectory for deep brain stimulation. In: Proceedings of MICCAI workshop in Medical Imaging and Augmented Reality, MICCAI MIAR’10, pp 149–158

  17. Fujii T, Emoto H, Sugou N, Mito T, Shibata I (2003) Neuropath planner-automatic path searching for neurosurgery. In: Proceedings of CARS’03, vol 1256, pp 587–596. Elsevier, Germany

  18. Guo T, Parrent A, Peters T (2007) Automatic target and trajectory identification for deep brain stimulation (DBS) procedures. In: Proceedings of MICCAI’07, Springer LNCS, vol 4791, pp 483–490

  19. Hellier P, Barillot C (2003) Coupling dense and landmark-based approaches for nonrigid registration. IEEE Trans Med Imaging 22(2): 217–227

    Article  PubMed  Google Scholar 

  20. Koller W, Pahwa R, Lyons K, Wilkinson S (2000) Deep brain stimulation of the Vim nucleus of the thalamus for the treatment of tremor. Neurology 55(12): S29–S33

    PubMed  CAS  Google Scholar 

  21. Lalys F, Haegelen C, Ferre J, El-Ganaoui O, Jannin P (2010) Construction and assessment of a 3-T MRI brain template. NeuroImage 49(1): 345–354

    Article  PubMed  Google Scholar 

  22. Le Goualher G, Barillot C, Bizais Y (1997) Modeling cortical sulci with active ribbons. Int J Pattern Recognit Artif Intell 11(8): 1295–1315

    Article  Google Scholar 

  23. Lee J, Huang C, Lee S (2002) Improving stereotactic surgery using 3-D reconstruction. IEEE Eng Med Biol Mag 21(6): 109–116

    Article  PubMed  Google Scholar 

  24. Lezcano E, Gmez-Esteban JC, Zarranz JJ, Lambarri I, Madoz P, Bilbao G, Pomposo I, Garibi J (2004) Improvement in quality of life in patients with advanced parkinson’s disease following bilateral deep-brain stimulation in subthalamic nucleus. Eur J Neurol 11(7): 451–454

    Article  PubMed  CAS  Google Scholar 

  25. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced parkinson’s disease. New Engl J Med 339(16): 1105–1111

    Article  PubMed  CAS  Google Scholar 

  26. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph 21(4): 163–169

    Article  Google Scholar 

  27. Maleike D, Nolden M, Meinzer H, Wolf I (2009) Interactive segmentation framework of the medical imaging interaction toolkit. Computer methods and programs in biomedicine 96(1):72–83. http://www.mitk.org

  28. Mangin J (2000) Entropy minimization for automatic correction of intensity nonuniformity. In: Proceedings of IEEE workshop on mathematical methods in biomedical image analysis, pp 162–169

  29. Mangin J, Coulon O, Frouin V (1998) Robust brain segmentation using histogram scale-space analysis and mathematical morphology. In: Proceedings of MICCAI98, vol 1496, pp 1230–1241

  30. Nowinski W, Yang G, Yeo T (2002) Computer-aided stereotactic functional neurosurgery enhanced by the use of the multiple brain atlas database. IEEE Trans Med Imaging 19(1): 62–69

    Article  Google Scholar 

  31. Schumann C, Bieberstein J, Trumm C, Schmidt D, Bruners P, Niethammer M, Hoffmann R, Mahnken A, Pereira P, Peitgen H (2010) Fast automatic path proposal computation for hepatic needle placement. In: Proceedings of SPIE medical imaging: visualization, image-guided procedures, and modeling, vol 7625, p 76251J

  32. Seitel A, Engel M, Sommer C, Redeleff B, Essert C, Baegert C, Fangerau M, Fritzsche K, Yung K, Meinzer HP, Maier-Hein L (2011) Computer-assisted trajectory planning for percutaneous needle insertions. Med Phys 38(6): 3246–3260

    Article  PubMed  Google Scholar 

  33. Shamir R, Tamir I, Dabool E, Joskowicz L, Shoshan Y (2010) A method for planning safe trajectories in image-guided keyhole neurosurgery. In: Proceedings of MICCAI’10, Springer LNCS, vol 6363, pp 457–464

  34. Starr P, Turner R, Rau G, Lindsey N, Heath S, Volz M, Ostrem J, Marks W Jr (2006) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. J Neurosurg 104(4): 488–501

    Article  PubMed  Google Scholar 

  35. Vaillant M, Davatzikos C, Taylor R, Bryan R (1997) A path-planning algorithm for image-guided neurosurgery. In: Proceedings of CVRMed-MRCAS’97, Springer LNCS, vol 1205, pp 467–476

  36. Villard C, Soler L, Papier N, Agnus V, Gangi A, Mutter D, Marescaux J (2003) RF-Sim: a treatment planning tool for radiofrequency ablation of hepatic tumors. In: Proceedings of information visualization. IEEE Computer Society Press, Los Alamitos, pp 561–566

  37. Wiest-Daesslé N, Yger P, Prima S, Barillot C (2007) Evaluation of a new optimisation algorithm for rigid registration of MRI data. In: Proceedings of SPIE medical imaging, vol 6512, p 651206

  38. Winkler D, Tittgemeyer M, Schwarz J, Preul C, Strecker K, Meixensberger J (2005) The first evaluation of brain shift during functional neurosurgery by deformation field analysis. J Neurol Neurosurg Psychiatr 76(8): 1161–1163

    Article  PubMed  CAS  Google Scholar 

  39. Wolf I, Vetter M, Wegner I, Bttger T, Nolden M, Schbinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The Medical imaging interaction toolkit. Med Image Anal 9(6):594–604. http://www.mitk.org

    Google Scholar 

  40. York MK, Wilde EA, Simpson R, Jankovic J (2009) Relationship between neuropsychological outcome and DBS surgical trajectory and electrode location. J Neurol Sci 287(1-2): 159–171

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Essert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essert, C., Haegelen, C., Lalys, F. et al. Automatic computation of electrode trajectories for Deep Brain Stimulation: a hybrid symbolic and numerical approach. Int J CARS 7, 517–532 (2012). https://doi.org/10.1007/s11548-011-0651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-011-0651-8

Keywords

Navigation