[go: up one dir, main page]

Skip to main content
Log in

Effect of Oil Type on Formation, Structure and Thermal Properties of γ-oryzanol and β-sitosterol-Based Organogels

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Oil sources characterized of increasing viscosity and polarity (flax-seed oil, sunflower oil, extra virgin olive oil, triolein, castor oil) were gelled by using mixtures of β-sitosterol and γ-oryzanol (5, 10 and 20 % w/w). The gelling time, thermal properties as well as structure characteristics were determined. As the oil viscosity increased the gelling time increased. The effect of oil type resulted more evident as the structurant concentration decreased. Samples containing 5 % of the most viscous and polar castor oil did not gelled over the entire experiment. When gels were formed, the firmness of samples decreased in concomitance with modifications of thermal data as the oil viscosity increased. During storage at 20 °C the gels became stronger as consequence of the progression of the aggregation among sterol-sterol ester assemblages. Once again, less structurants were in the mixture more evident was the influence of oil type. These results were attributed to the increase of the difficulty of β-sitosterol and γ-oryzanol molecules to pack together as the oil viscosity increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.M. Bergam, M. Ader, Trends Endocrinol. Metab. 11, 351–356 (2000)

    Article  Google Scholar 

  2. H.M. Roche, Proc. Nutr. Soc. 64, 23–29 (2005)

    Article  CAS  Google Scholar 

  3. J.V. Woodside, D. Kromhout, Proc. Nutr. Soc. 64, 554–564 (2005)

    Article  CAS  Google Scholar 

  4. E.D. Co, A.G. Marangoni, J. Am. Oil Chem. Soc. 89, 749–780 (2012)

    Article  Google Scholar 

  5. M.A. Rogers, A.J. Wright, A.G. Marangoni, Soft Matter 4, 1483–1490 (2008)

    Article  CAS  Google Scholar 

  6. M.A. Rogers, Food Res. Int. 4, 747–753 (2009)

    Article  Google Scholar 

  7. M.A. Rogers, A.J. Wright, A.G. Marangoni, Soft Matter 5, 1594–1596 (2009)

    Article  CAS  Google Scholar 

  8. A. Bot, W.G.M. Agterof, J. Am. Oil Chem. Soc. 83, 513–521 (2006)

    Article  CAS  Google Scholar 

  9. A. Bot, R. den Adel, E.C. Roijers, J. Am. Oil Chem. Soc. 85, 1127–1134 (2008)

    Article  CAS  Google Scholar 

  10. A. Bot, R. den Adel, E.C. Roijers, C. Regkos, Food Biophys. 4, 266–272 (2009)

    Article  Google Scholar 

  11. F. Marangoni, A. Poli, Pharmacol. Res. 61, 193–199 (2010)

    Article  CAS  Google Scholar 

  12. M. St-Onge, M.,.P.J.H. Jones, Lipids 38, 367–375 (2003)

    Article  CAS  Google Scholar 

  13. M.A. Rogers, A. Bot, R.S.H. Lam, T. Petersen, T. May, J. Phys. Chem. 114, 8278–8285 (2010)

    Article  CAS  Google Scholar 

  14. H. Sawalha, R. den Adel, P. Venema, A. Bot, E. Flöter, E. van der Linden, J. Agric. Food Chem. 60, 3462–3470 (2012)

    Article  CAS  Google Scholar 

  15. A. Bot, E.P. Gilbert, W.G. Bouwman, H. Sawalha, R. den Adel, V.M. Garamas, P. Verema, E. van der Linden, E. Flöter, Faraday Discuss. 158, 239–266 (2012)

    Article  Google Scholar 

  16. R. Sawalha, G. Margry, R. den Adel, P. Venema, A. Bot, E. Flöter, E. van der Linden, Eur. J. Lipid Sci. Technol. 115, 295–300 (2013)

    Article  CAS  Google Scholar 

  17. A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Hausermannm, High Press. Res. 14, 235–248 (1996)

    Article  Google Scholar 

  18. S. Agrawal, D. Bhatnapar, Indian J. Pure Appl. Phys. 43, 624–629 (2005)

    CAS  Google Scholar 

  19. D. Kumar, A. Singh, S.P. Tarsikka, J. Food Sci. Technol. 50, 549–554 (2013)

    Article  CAS  Google Scholar 

  20. H. Lizhi, K. Toyoda, I. Ihara, J. Food Eng. 88, 151–158 (2008)

    Article  Google Scholar 

  21. T.H. Gouw, J.C. Vlugter, Fett. Wiss. Technol. 4, 223–226 (1967)

    Google Scholar 

  22. H. Vaikousi, A. Lazaridou, C.G. Biliaderis, J. Zawistowski, J. Agric. Food Chem. 55, 1790–1798 (2007)

    Article  CAS  Google Scholar 

  23. X.Y. Liu, Top. Curr. Chem. 256, 1–37 (2005)

    Article  CAS  Google Scholar 

  24. H. Sawalha, P. Verema, A. Bot, E. Flöter, E. van der Linden, Food Biophys. 6, 20–25 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Research was supported by the project “From nutrigenetics to nutraceutics: development of synergic and integrated actions for the development of tests, diets and foods able to improve the public well-being and prevent food related diseases. Art. 13 del D.M. 593, 8 August 2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Calligaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calligaris, S., Mirolo, G., Da Pieve, S. et al. Effect of Oil Type on Formation, Structure and Thermal Properties of γ-oryzanol and β-sitosterol-Based Organogels. Food Biophysics 9, 69–75 (2014). https://doi.org/10.1007/s11483-013-9318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9318-z

Keywords

Navigation