[go: up one dir, main page]

Skip to main content
Log in

Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Dual topological insulator (DTI), which simultaneously hosts topological insulator (TI) and topological crystalline insulator (TCI) phases, has attracted extensive attention since it has a better robustness of topological nature and broad application prospects in spintronics. However, the realization of DTI phase in two-dimensional (2D) system is extremely scarce. By first-principles calculations, we predict that the 2D rectangular bismuth (R—Bi) bilayer is a novel DTI, featured by ℤ2 topological invariant ℤ2 = 1, mirror Chern number CM = −1, and metallic edge states within the bulk band gap. More interestingly, the TCI phase in bilayer is protected by horizontal glide mirror symmetries, rather than the usual mirror symmetry. The bulk band gap can be effectively tuned by vertical electric field and strain. Besides, the electric field can trigger the transition between TI and metallic phases for the bilayer, accompanied by the annihilation of TCI phase. On this basis, a topological field effect transistor is proposed, which can rapidly manipulate spin and charge carriers via electric field. The KBr(110) surface is demonstrated as an ideal substrate for the deposition of bilayer. These findings provide not only a new strategy for exploiting 2D DTI, but also a promising candidate for spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Moore, The birth of topological insulators, Nature 464(7286), 194 (2010)

    Article  ADS  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  3. L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106(10), 106802 (2011)

    Article  ADS  Google Scholar 

  4. Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82(10), 102001 (2013)

    Article  ADS  Google Scholar 

  5. Y. Ando and L. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Condens. Matter Phys. 6(1), 361 (2015)

    Article  ADS  Google Scholar 

  6. C. Niu, P. M. Buhl, G. Bihlmayer, D. Wortmann, Y. Dai, S. Blügel, and Y. Mokrousov, Robust dual topological character with spin-valley polarization in a monolayer of the Dirac semimetal Na3Bi, Phys. Rev. B 95(7), 075404 (2017)

    Article  ADS  Google Scholar 

  7. N. Mao, X. Hu, C. Niu, B. Huang, and Y. Dai, Dual topological insulator and insulator—semimetal transition in mirror-symmetric honeycomb materials, Phys. Rev. B 100(20), 205116 (2019)

    Article  ADS  Google Scholar 

  8. N. Avraham, A. Kumar Nayak, A. Steinbok, A. Norris, H. Fu, Y. Sun, Y. Qi, L. Pan, A. Isaeva, A. Zeugner, C. Felser, B. Yan, and H. Beidenkopf, Visualizing coexisting surface states in the weak and crystalline topological insulator Bi2TeI, Nat. Mater. 19(6), 610 (2020)

    Article  ADS  Google Scholar 

  9. I. Cucchi, A. Marrazzo, E. Cappelli, S. Riccò, F. Y. Bruno, S. Lisi, M. Hoesch, T. K. Kim, C. Cacho, C. Besnard, E. Giannini, N. Marzari, M. Gibertini, F. Baumberger, and A. Tamai, Bulk and surface electronic structure of the dual-topology semimetal Pt2HgSe3, Phys. Rev. Lett. 124(10), 106402 (2020)

    Article  ADS  Google Scholar 

  10. M. Eschbach, M. Lanius, C. Niu, E. Młyńczak, P. Gospodarič, J. Kellner, P. Schüffelgen, M. Gehlmann, S. Döring, E. Neumann, M. Luysberg, G. Mussler, L. Plucinski, M. Morgenstern, D. Grützmacher, G. Bihlmayer, S. Blügel, and C. M. Schneider, Bi1Te1 is a dual topological insulator, Nat. Commun. 8(1), 14976 (2017)

    Article  ADS  Google Scholar 

  11. J. I. Facio, S. K. Das, Y. Zhang, K. Koepernik, J. van den Brink, and I. C. Fulga, Dual topology in jacutingaite Pt2HgSe3, Phys. Rev. Mater. 3(7), 074202 (2019)

    Article  Google Scholar 

  12. H. Lee, Y. G. Kang, M. C. Jung, M. J. Han, and K. J. Chang, Robust dual topological insulator phase in NaZnBi, NPG Asia Mater. 14(1), 36 (2022)

    Article  ADS  Google Scholar 

  13. I. Matsuda, K. Yaji, A. A. Taskin, M. D’angelo, R. Yukawa, Y. Ohtsubo, P. Le Fèvre, F. Bertran, S. Yoshizawa, A. Taleb-Ibrahimi, A. Kakizaki, Y. Ando, and F. Komori, Surface state of the dual topological insulator \({\rm{B}}{{\rm{i}}_{0.91}}{\rm{S}}{{\rm{b}}_{0.09}}(11\bar 2)\), Physica B 516, 100 (2017)

    Article  ADS  Google Scholar 

  14. T. Rauch, M. Flieger, J. Henk, I. Mertig, and A. Ernst, Dual topological character of chalcogenides: Theory for Bi2Te3, Phys. Rev. Lett. 112(1), 016802 (2014)

    Article  ADS  Google Scholar 

  15. J. C. Y. Teo, L. Fu, and C. L. Kane, Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx, Phys. Rev. B 78(4), 045426 (2008)

    Article  ADS  Google Scholar 

  16. C. Fang and L. Fu, New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic, Phys. Rev. B 91(16), 161105 (2015)

    Article  ADS  Google Scholar 

  17. H. Kim and S. Murakami, Glide-symmetric topological crystalline insulator phase in a nonprimitive lattice, Phys. Rev. B 102(19), 195202 (2020)

    Article  ADS  Google Scholar 

  18. J. Ma, C. Yi, B. Lv, Z. J. Wang, S. Nie, L. Wang, L. Kong, Y. Huang, P. Richard, P. Zhang, K. Yaji, K. Kuroda, S. Shin, H. Weng, B. A. Bernevig, Y. Shi, T. Qian, and H. Ding, Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb, Sci. Adv. 3(5), e1602415 (2017)

    Article  ADS  Google Scholar 

  19. Z. Wang, A. Alexandradinata, R. J. Cava, and B. A. Bernevig, Hourglass fermions, Nature 532(7598), 189 (2016)

    Article  ADS  Google Scholar 

  20. Y. L. Chen, M. Kanou, Z. K. Liu, H. J. Zhang, J. A. Sobota, D. Leuenberger, S. K. Mo, B. Zhou, S. L. Yang, P. S. Kirchmann, D. H. Lu, R. G. Moore, Z. Hussain, Z. X. Shen, X. L. Qi, and T. Sasagawa, Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl, Nat. Phys. 9(11), 704 (2013)

    Article  Google Scholar 

  21. B. Yan, M. Jansen, and C. Felser, A large-energy-gap oxide topological insulator based on the superconductor BaBiO3, Nat. Phys. 9(11), 709 (2013)

    Article  Google Scholar 

  22. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)

    Article  Google Scholar 

  23. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E. V. Chulkov, Prediction and observation of an antiferromagnetic topological insulator, Nature 576(7787), 416 (2019)

    Article  ADS  Google Scholar 

  24. C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)

    Article  ADS  Google Scholar 

  25. F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material, Science 357(6348), 287 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  26. Y. Lu, W. Xu, M. Zeng, G. Yao, L. Shen, M. Yang, Z. Luo, F. Pan, K. Wu, T. Das, P. He, J. Jiang, J. Martin, Y. P. Feng, H. Lin, and X. Wang, Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110), Nano Lett. 15(1), 80 (2015)

    Article  ADS  Google Scholar 

  27. Y. Bai, L. Cai, N. Mao, R. Li, Y. Dai, B. Huang, and C. Niu, Doubled quantum spin Hall effect with high-spin Chern number in α-antimonene and α-bismuthene, Phys. Rev. B 105(19), 195142 (2022)

    Article  ADS  Google Scholar 

  28. L. Kou, X. Tan, Y. Ma, H. Tahini, L. Zhou, Z. Sun, D. Aijun, C. Chen, and S. C. Smith, Tetragonal bismuth bilayer: A stable and robust quantum spin Hall insulator, 2D Mater. 2, 045010 (2015)

    Article  Google Scholar 

  29. R. W. Zhang, C. W. Zhang, W. X. Ji, S. S. Yan, and Y. G. Yao, First-principles prediction on bismuthylene monolayer as a promising quantum spin Hall insulator, Nanoscale 9(24), 8207 (2017)

    Article  Google Scholar 

  30. X. Kong, L. Li, O. Leenaerts, X. J. Liu, and F. M. Peeters, New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings, Phys. Rev. B 96(3), 035123 (2017)

    Article  ADS  Google Scholar 

  31. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  32. G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal—amorphous-semiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)

    Article  ADS  Google Scholar 

  33. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  34. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)

    Article  Google Scholar 

  35. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45(23), 13244 (1992)

    Article  ADS  Google Scholar 

  36. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H—Pu, J. Chem. Phys. 132(15), 154104 (2010)

    Article  ADS  Google Scholar 

  37. S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32(7), 1456 (2011)

    Article  Google Scholar 

  38. A. A. Soluyanov and D. Vanderbilt, Wannier representation of Z2 topological insulators, Phys. Rev. B 83(3), 035108 (2011)

    Article  ADS  Google Scholar 

  39. A. A. Soluyanov and D. Vanderbilt, Computing topological invariants without inversion symmetry, Phys. Rev. B 83(23), 235401 (2011)

    Article  ADS  Google Scholar 

  40. M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F Met. Phys. 14(5), 1205 (1984)

    Article  ADS  Google Scholar 

  41. M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F Met. Phys. 15(4), 851 (1985)

    Article  ADS  Google Scholar 

  42. J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera, and L. Fu, Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator, Nat. Mater. 13(2), 178 (2014)

    Article  ADS  Google Scholar 

  43. J. Liu, X. Qian, and L. Fu, Crystal field effect induced topological crystalline insulators in monolayer IV—VI semiconductors, Nano Lett. 15(4), 2657 (2015)

    Article  ADS  Google Scholar 

  44. C. Niu, P. M. Buhl, G. Bihlmayer, D. Wortmann, S. Blügel, and Y. Mokrousov, Topological crystalline insulator and quantum anomalous Hall states in IV–VI-based monolayers and their quantum wells, Phys. Rev. B 91(20), 201401 (2015)

    Article  ADS  Google Scholar 

  45. L. Yan, C. M. Lopez, R. P. Shrestha, E. A. Irene, A. A. Suvorova, and M. Saunders, Magnesium oxide as a candidate high-κ gate dielectric, Appl. Phys. Lett. 88(14), 142901 (2006)

    Article  ADS  Google Scholar 

  46. A. Posadas, F. J. Walker, C. H. Ahn, T. L. Goodrich, Z. Cai, and K. S. Ziemer, Epitaxial MgO as an alternative gate dielectric for SiC transistor applications, Appl. Phys. Lett. 92(23), 233511 (2008)

    Article  ADS  Google Scholar 

  47. T. Hirahara, G. Bihlmayer, Y. Sakamoto, M. Yamada, H. Miyazaki, S. I. Kimura, S. Blügel, and S. Hasegawa, Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te2, Phys. Rev. Lett. 107(16), 166801 (2011)

    Article  ADS  Google Scholar 

  48. F. Yang, L. Miao, Z. F. Wang, M. Y. Yao, F. Zhu, Y. R. Song, M. X. Wang, J. P. Xu, A. V. Fedorov, Z. Sun, G. B. Zhang, C. Liu, F. Liu, D. Qian, C. L. Gao, and J. F. Jia, Spatial and energy distribution of topological edge states in single Bi(111) bilayer, Phys. Rev. Lett. 109(1), 016801 (2012)

    Article  ADS  Google Scholar 

  49. F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. C. Zhang, and J. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12004137), the Taishan Scholar Project of Shandong Province (No. ts20190939), and the Natural Science Foundation of Shandong Province (Grant No. ZR2020QA052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengshi Li or Yaping Wang.

Additional information

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ji, W., Zhang, J. et al. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator. Front. Phys. 18, 43301 (2023). https://doi.org/10.1007/s11467-023-1262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1262-x

Keywords

Navigation