[go: up one dir, main page]

Skip to main content
Log in

HiFAST: An Hi data calibration and imaging pipeline for FAST

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The Five-hundred-meter Aperture Spherical radio Telescope (FAST) has the largest aperture and a 19-beam L-band receiver, making it powerful for investigating the neutral hydrogen atomic gas (Hi) in the universe. We present HiFAST (https://hifast.readthedocs.io), a dedicated, modular, and self-contained calibration and imaging pipeline for processing the Hi data of FAST. The pipeline consists of frequency-dependent noise diode calibration, baseline fitting, standing wave removal using an FFT-based method, flux density calibration, stray radiation correction, and gridding to produce data cubes. These modules can be combined as needed to process the data from most FAST observation modes: tracking, drift scanning, On-The-Fly mapping, and most of their variants. With HiFAST, the root-mean-square (RMS) noises of the calibrated spectra from all 19 beams were only slightly (∼5%) higher than the theoretical expectation. The results for the extended source M33 and the point sources are consistent with the results from Arecibo. The moment maps (0, 1 and 2) of M33 agree well with the results from the Arecibo Galaxy Environment Survey (AGES) with a fractional difference of less than 10%. For a common sample of 221 sources with signal-to-noise ratio S/N > 10 from the Arecibo Legacy Fast ALFA (ALFALFA) survey, the mean value of fractional difference in the integrated flux density, Sint, between the two datasets is approximately 0.005%, with a dispersion of 15.4%. Further checks on the integrated flux density of 23 sources with seven observations indicate that the variance in the flux density of the source with luminous objects (Sint > 2.5 Jy km s−1) is less than 5%. Our tests suggest that the FAST telescope, with the efficient, precise, and user-friendly pipeline HiFAST, will yield numerous significant scientific findings in the investigation of the Hi in the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Nan, D. I. Li, C. Jin, Q. Wang, L. Zhu, W. Zhu, H. Zhang, Y. Yue, and L. Qian, Int. J. Mod. Phys. D 20, 989 (2011), arXiv: 1105.3794.

    Article  ADS  Google Scholar 

  2. P. Jiang, Y. L. Yue, H. Q. Gan, R. Yao, H. Li, G. F. Pan, J. H. Sun, D. J. Yu, H. F. Liu, N. Y. Tang, L. Qian, J. G. Lu, J. Yan, B. Peng, S. X. Zhang, Q. M. Wang, Q. Li, and D. Li, Sci. China-Phys. Mech. Astron. 62, 959502 (2019), arXiv: 1903.06324.

    Article  ADS  Google Scholar 

  3. P. Jiang, N. Y. Tang, L. G. Hou, M. T. Liu, M. Krčo, L. Qian, J. H. Sun, T. C. Ching, B. Liu, Y. Duan, Y. L. Yue, H. Q. Gan, R. Yao, H. Li, G. F. Pan, D. J. Yu, H. F. Liu, D. Li, B. Peng, and J. Yan, Res. Astron. Astrophys. 20, 064 (2020), arXiv: 2002.01786.

    Article  ADS  Google Scholar 

  4. L. Qian, R. Yao, J. Sun, J. Xu, Z. Pan, and P. Jiang, Innovation 1, 100053 (2020), arXiv: 2011.13542.

    Google Scholar 

  5. J. Yin, P. Jiang, and R. Yao, Sci. China-Phys. Mech. Astron. 66, 239513 (2023).

    Article  ADS  Google Scholar 

  6. K. O’Neil, in Single-dish calibration techniques at radio wavelengths: Single-Dish Radio Astronomy: Techniques and Application, ASP Conference Series, Vol. 278, edited by S. Stanimirović, D. R. Altschuler, P. F. Goldsmith, and C. J. Salter (ASP, 2022), pp. 293–311.

  7. B. Winkel, A. Kraus, and U. Bach, Astron. Astrophys. 540, A140 (2012), arXiv: 1203.0741.

    Article  ADS  Google Scholar 

  8. A. Dunning, M. Bowen, S. Castillo, Y. S. Chung, P. Doherty, D. George, D. B. Hayman, K. Jeganathan, H. Kanoniuk, S. Mackay, L. Reilly, P. Roush, S. K. W. Smart, R. D. Shaw, S. L. Smith, T. Tzioumis, and V.-C. J. Venables, in Design and laboratory testing of the five hundred meter aperture spherical telescope (FAST) 19 beam L-band receiver: 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) (Montreal, 2017), pp. 1–4.

  9. K. Jeganathan, A. Dunning, J. Chengjin, Z. Haiyan, Y. Chung, S. Mackay, P. Doherty, H. Kanoniuk, L. Reilly, P. Roush, R. D. Shaw, S. Severs, M. A. Bowen, and D. B. Hayman, in The FAST multi-beam receiver design with RF over fiber link: 2017 IEEE Asia Pacific Microwave Conference (APMC) (Kuala Lumpur, 2017), pp. 244–247.

  10. S. A. Wolfe, D. J. Pisano, and F. J. Lockman, Mapping Diffuse Neutral Hydrogen with the GBT, GBT Memo 289 (2015).

  11. M. E. Putman, V. de Heij, L. Staveley-Smith, R. Braun, K. C. Freeman, B. K. Gibson, W. B. Burton, D. G. Barnes, G. D. Banks, R. Bhathal, W. J. G. de Blok, P. J. Boyce, M. J. Disney, M. J. Drinkwater, R. D. Ekers, P. A. Henning, H. Jerjen, V. A. Kilborn, P. M. Knezek, B. Koribalski, D. F. Malin, M. Marquarding, R. F. Minchin, J. R. Mould, T. Oosterloo, R. M. Price, S. D. Ryder, E. M. Sadler, I. Stewart, F. Stootman, R. L. Webster, and A. E. Wright, Astron. J. 123, 873 (2002), arXiv: astro-ph/0110416.

    Article  ADS  Google Scholar 

  12. M. E. Putman, L. Staveley-Smith, K. C. Freeman, B. K. Gibson, and D. G. Barnes, Astrophys. J. 586, 170 (2003), arXiv: astro-ph/0209127.

    Article  ADS  Google Scholar 

  13. J. I. Davies, R. Auld, L. Burns, R. Minchin, E. Momjian, S. Schneider, M. Smith, R. Taylor, and W. van Driel, Mon. Not. R. Astron. Soc. 415, 1883 (2011).

    Article  ADS  Google Scholar 

  14. R. Taylor, R. F. Minchin, H. Herbst, J. I. Davies, R. Rodriguez, and C. Vazquez, Mon. Not. R. Astron. Soc. 443, 2634 (2014), arXiv: 1407.0016.

    Article  ADS  Google Scholar 

  15. S. J. Baek, A. Park, Y. J. Ahn, and J. Choo, Analyst 140, 250 (2015).

    Article  ADS  Google Scholar 

  16. P. H. C. Eilers, Anal. Chem. 75, 3631 (2003).

    Article  Google Scholar 

  17. Z. M. Zhang, S. Chen, and Y. Z. Liang, Analyst 135, 1138 (2010).

    Article  ADS  Google Scholar 

  18. R. Padman, Publ. Astron. Soc. Aust. 3, 111 (1977).

    Article  ADS  Google Scholar 

  19. F. H. Briggs, E. Sorar, R. C. Kraan-Korteweg, and W. van Driel, Publ. Astron. Soc. Aust. 14, 37 (1997), arXiv: astro-ph/9701182.

    Article  ADS  Google Scholar 

  20. J. E. G. Peek, C. Heiles, K. A. Douglas, M. Y. Lee, J. Grcevich, S. Stanimirović, M. E. Putman, E. J. Korpela, S. J. Gibson, A. Begum, D. Saul, T. Robishaw, and M. Krčo, Astrophys. J. Suppl. Ser. 194, 20 (2011), arXiv: 1101.1879.

    Article  ADS  Google Scholar 

  21. C. P. Zhang, J. L. Xu, J. Wang, Y. Jing, Z. Liu, M. Zhu, and P. Jiang, Res. Astron. Astrophys. 22, 025015 (2022), arXiv: 2111.11018.

    Article  ADS  Google Scholar 

  22. M. J. Meyer, M. A. Zwaan, R. L. Webster, L. Staveley-Smith, E. Ryan-Weber, M. J. Drinkwater, D. G. Barnes, M. Howlett, V. A. Kilborn, J. Stevens, M. Waugh, M. J. Pierce, R. Bhathal, W. J. G. de Blok, M. J. Disney, R. D. Ekers, K. C. Freeman, D. A. Garcia, B. K. Gibson, J. Harnett, P. A. Henning, H. Jerjen, M. J. Kesteven, P. M. Knezek, B. S. Koribalski, S. Mader, M. Marquarding, R. F. Minchin, J. O’Brien, T. Oosterloo, R. M. Price, M. E. Putman, S. D. Ryder, E. M. Sadler, I. M. Stewart, F. Stootman, and A. E. Wright, Mon. Not. R. Astron. Soc. 350, 1195 (2004), arXiv: astro-ph/0406384.

    Article  ADS  Google Scholar 

  23. M. P. Haynes, R. Giovanelli, B. R. Kent, E. A. K. Adams, T. J. Balonek, D. W. Craig, D. Fertig, R. Finn, C. Giovanardi, G. Hallenbeck, K. M. Hess, G. L. Hoffman, S. Huang, M. G. Jones, R. A. Koopmann, D. A. Kornreich, L. Leisman, J. Miller, C. Moorman, J. O’Connor, A. O’Donoghue, E. Papastergis, P. Troischt, D. Stark, and L. Xiao, Astrophys. J. 861, 49 (2018), arXiv: 1805.11499.

    Article  ADS  Google Scholar 

  24. A. Comrie, K.-S. Wang, S.-C. Hsu, A. Moraghan, P. Harris, Q. Pang, A. Pińska, C.-C. Chiang, T.-H. Chang, Y.-H. Hwang, H. Jan, M.-Y. Lin, and R. Simmonds, CARTA: The Cube Analysis and Rendering Tool for Astronomy (2.0.0) (Zenodo, 2021).

  25. P. M. W. Kalberla, U. Mebold, and W. Reich, Astron. Astrophys. 82, 275 (1980).

    ADS  Google Scholar 

  26. P. M. W. Kalberla, W. B. Burton, D. Hartmann, E. M. Arnal, E. Bajaja, R. Morras, and W. G. L. Pöppel, Astron. Astrophys. 440, 775 (2005).

    Article  ADS  Google Scholar 

  27. A. I. Boothroyd, K. Blagrave, F. J. Lockman, P. G. Martin, D. Pinheiro Gonçalves, and S. Srikanth, Astron. Astrophys. 536, A81 (2011), arXiv: 1110.1765.

    Article  ADS  Google Scholar 

  28. B. Winkel, J. Kerp, L. Flöer, P. M. W. Kalberla, N. Ben Bekhti, R. Keller, and D. Lenz, Astron. Astrophys. 585, A41 (2016), arXiv: 1512.05348.

    Article  ADS  Google Scholar 

  29. E. W. Greisen, and M. R. Calabretta, Astron. Astrophys. 395, 1061 (2002).

    Article  ADS  Google Scholar 

  30. J. G. Mangum, D. T. Emerson, and E. W. Greisen, Astron. Astrophys. 474, 679 (2007).

    Article  ADS  Google Scholar 

  31. M. P. Haynes, R. Giovanelli, A. M. Martin, K. M. Hess, A. Saintonge, E. A. K. Adams, G. Hallenbeck, G. L. Hoffman, S. Huang, B. R. Kent, R. A. Koopmann, E. Papastergis, S. Stierwalt, T. J. Balonek, D. W. Craig, S. J. U. Higdon, D. A. Kornreich, J. R. Miller, A. A. O’Donoghue, R. P. Olowin, J. L. Rosenberg, K. Spekkens, P. Troischt, and E. M. Wilcots, Astron. J. 142, 170 (2011), arXiv: 1109.0027.

    Article  ADS  Google Scholar 

  32. O. C. Keenan, J. I. Davies, R. Taylor, and R. F. Minchin, Mon. Not. R. Astron. Soc. 456, 951 (2016), arXiv: 1511.02710.

    Article  ADS  Google Scholar 

  33. P. Serra, T. Westmeier, N. Giese, R. Jurek, L. Flöer, A. Popping, B. Winkel, T. van der Hulst, M. Meyer, B. S. Koribalski, L. Staveley-Smith, and H. Courtois, Mon. Not. R. Astron. Soc. 448, 1922 (2015), arXiv: 1501.03906.

    Article  ADS  Google Scholar 

  34. T. Westmeier, S. Kitaeff, D. Pallot, P. Serra, J. M. van der Hulst, R. J. Jurek, A. Elagali, B. Q. For, D. Kleiner, B. S. Koribalski, K. Lee-Waddell, J. R. Mould, T. N. Reynolds, J. Rhee, and L. Staveley-Smith, Mon. Not. R. Astron. Soc. 506, 3962 (2021), arXiv: 2106.15789.

    Article  ADS  Google Scholar 

  35. G. S. Shostak, and R. J. Allen, Astron. Astrophys. 81, 167 (1980).

    ADS  Google Scholar 

  36. P. Zuo, D. Yang, J. Wang, L. Staveley-Smith, X. Lin, B. Q. For, T. Westmeier, J. Wang, K. Spekkens, V. Kilborn, O. Ivy Wong, D. Li, K. Lee-Waddell, B. Catinella, L. C. Ho, B. Koribalski, B. Lee, and M. Zhu, Res. Astron. Astrophys. 22, 095016 (2022).

    Article  ADS  Google Scholar 

  37. J. Wang, B. S. Koribalski, P. Serra, T. van der Hulst, S. Roychowdhury, P. Kamphuis, and J. N. Chengalur, Mon. Not. R. Astron. Soc. 460, 2143 (2016), arXiv: 1605.01489.

    Article  ADS  Google Scholar 

  38. R. Giovanelli, M. P. Haynes, B. R. Kent, P. Perillat, B. Catinella, G. L. Hoffman, E. Momjian, J. L. Rosenberg, A. Saintonge, K. Spekkens, S. Stierwalt, N. Brosch, K. L. Masters, C. M. Springob, I. D. Karachentsev, V. E. Karachentseva, R. A. Koopmann, E. Muller, W. van Driel, and L. van Zee, Astron. J. 130, 2613 (2005), arXiv: astro-ph/0508300.

    Article  ADS  Google Scholar 

  39. G. Van Rossum, and F. L. Drake, Python 3 Reference Manual (CreateSpace, Scotts Valley, CA, 2009).

    Google Scholar 

  40. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gerard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, Nature 585, 357 (2020), arXiv: 2006.10256.

    Article  ADS  Google Scholar 

  41. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, Nat. Methods 17, 261 (2020), arXiv: 1907.10121.

    Article  Google Scholar 

  42. The Astropy Collaboration, A. M. Price-Whelan, P. L. Lim, N. Earl, N. Starkman, L. Bradley, D. L. Shupe, A. A. Patil, L. Corrales, C. E. Brasseur, M. Nöthe, A. Donath, E. Tollerud, B. M. Morris, A. Ginsburg, E. Vaher, B. A. Weaver, J. Tocknell, W. Jamieson, M. H. van Kerkwijk, T. P. Robitaille, B. Merry, M. Bachetti, H. M. Günther, and Astropy Project Contributors, Astrophys. J. 935, 167 (2022), arXiv: 2206.14220.

    Article  ADS  Google Scholar 

  43. J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).

    Article  Google Scholar 

  44. A. Collette, Python and HDF5 (O’Reilly, 2013).

  45. C. P. Zhang, M. Zhu, P. Jiang, C. Cheng, J. Wang, J. Wang, J. L. Xu, X. L. Liu, N. P. Yu, L. Qian, H. Yu, M. Ai, Y. Jing, C. Xu, Z. Liu, X. Guan, C. Sun, Q. Yang, M. Huang, and Q. Hao, Sci. China-Phys. Mech. Astron. 67, 219511 (2024), arXiv: 2312.06097.

    Article  ADS  Google Scholar 

  46. M. Zhu, H. Yu, J. Wang, J. L. Xu, W. Du, L. Yuan, J. Wang, Y. Jing, M. Ai, and P. Jiang, ApJL 922, L21 (2021).

    Article  ADS  Google Scholar 

  47. H. Yu, M. Zhu, J. L. Xu, M. Ai, P. Jiang, and Y. Yang, Mon. Not. R. Astron. Soc. 521, 2719 (2023), arXiv: 2302.03270.

    Article  ADS  Google Scholar 

  48. N. P. Yu, M. Zhu, J. L. Xu, C. P. Zhang, X. L. Liu, P. Jiang, and J. J. Wang, Mon. Not. R. Astron. Soc. 521, 737 (2023).

    Article  ADS  Google Scholar 

  49. R. Zhou, M. Zhu, Y. Yang, H. Yu, L. Yuan, P. Jiang, and W. Xi, Astrophys. J. 952, 130 (2023), arXiv: 2306.05080.

    Article  ADS  Google Scholar 

  50. Y. Liu, M. Zhu, H. Yu, M. Ai, P. Jiang, S. Liu, and L. Yuan, Mon. Not. R. Astron. Soc. 523, 3905 (2023), arXiv: 2304.13964.

    Article  ADS  Google Scholar 

  51. C. P. Zhang, P. Jiang, M. Zhu, J. Pan, C. Cheng, H. F. Liu, Y. Zhu, C. Sun, and F. Collaboration, Res. Astron. Astrophys. 23, 075016 (2023), arXiv: 2304.11895.

    Article  ADS  Google Scholar 

  52. J. E. G. Peek, B. L. Babler, Y. Zheng, S. E. Clark, K. A. Douglas, E. J. Korpela, M. E. Putman, S. Stanimirović, S. J. Gibson, and C. Heiles, Astrophys. J. Suppl. Ser. 234, 2 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Jing.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2022YFA1602901), the National Natural Science Foundation of China (Grant Nos. 11988101, 11873051, 12125302, and 12373011), the CAS Project for Young Scientists in Basic Research Grant (Grant No. YSBR-062), the K. C. Wong Education Foundation, and the science research grants from the China Manned Space Project. Yingjie Jing acknowledges support from the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS. We would like to express our gratitude to Prof. Rendong Nan and his team for their groundbreaking efforts in establishing the FAST telescope. Additionally, we would like to acknowledge the FAST operation team for their invaluable assistance and support in the development of this pipeline. We also thank Martha P. Haynes for generously sharing ALFALFA spectra data and insightful discussions on source flux calculations, which significantly enhanced our study. This work made use of the data from FAST (Five-hundred-meter Aperture Spherical radio Telescope). FAST is a Chinese national mega-science facility, operated by National Astronomical Observatories, Chinese Academy of Sciences.

FAST fellow

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Y., Wang, J., Xu, C. et al. HiFAST: An Hi data calibration and imaging pipeline for FAST. Sci. China Phys. Mech. Astron. 67, 259514 (2024). https://doi.org/10.1007/s11433-023-2333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2333-8

Navigation