[go: up one dir, main page]

Skip to main content
Log in

Predefined-time distributed multiobjective optimization for network resource allocation

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We consider the multiobjective optimization problem for the resource allocation of the multiagent network, where each agent contains multiple conflicting local objective functions. The goal is to find compromise solutions minimizing all local objective functions subject to resource constraints as much as possible, i.e., the Pareto optimums. To this end, we first reformulate the multiobjective optimization problem into one single-objective distributed optimization problem by using the weighted Lp preference index, where the weighting factors of all local objective functions are obtained from the optimization procedure so that the optimizer of the latter is the desired Pareto optimum of the former. Next, we propose novel predefined-time algorithms to solve the reformulated problem by time-based generators. We show that the reformulated problem is solved within a predefined time if the local objective functions are strongly convex and smooth. Moreover, the settling time can be arbitrarily preset since it does not depend on the initial values and designed parameters. Finally, numerical simulations are presented to illustrate the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang S, Tan S, Xu J X. Consensus based approach for economic dispatch problem in a smart grid. IEEE Trans Power Syst, 2013, 28: 4416–4426

    Article  Google Scholar 

  2. Yang T, Lu J, Wu D, et al. A distributed algorithm for economic dispatch over time-varying directed networks with delays. IEEE Trans Ind Electron, 2016, 64: 5095–5106

    Article  Google Scholar 

  3. Li C, Yu X, Yu W, et al. Distributed event-triggered scheme for economic dispatch in smart grids. IEEE Trans Ind Inf, 2016, 12: 1775–1785

    Article  Google Scholar 

  4. Jin L, Li S. Distributed task allocation of multiple robots: a control perspective. IEEE Trans Syst Man Cybern Syst, 2018, 48: 693–701

    Article  Google Scholar 

  5. Shang R, Dai K, Jiao L, et al. Improved memetic algorithm based on route distance grouping for multiobjective large scale capacitated arc routing problems. IEEE Trans Cybern, 2015, 46: 1000–1013

    Article  Google Scholar 

  6. Nedić A, Olshevsky A, Shi W. Improved convergence rates for distributed resource allocation. In: Proceedings of IEEE Conference on Decision and Control (CDC), Miami, 2018. 172–177

  7. Deng Z, Liang S, Hong Y. Distributed continuous-time algorithms for resource allocation problems over weight-balanced digraphs. IEEE Trans Cybern, 2017, 48: 3116–3125

    Article  Google Scholar 

  8. Zhang J, You K, Cai K. Distributed dual gradient tracking for resource allocation in unbalanced networks. IEEE Trans Signal Process, 2020, 68: 2186–2198

    Article  MathSciNet  Google Scholar 

  9. Yang T, Yi X, Wu J, et al. A survey of distributed optimization. Annu Rev Control, 2019, 47: 278–305

    Article  MathSciNet  Google Scholar 

  10. Ren H, Zhou W, Nakagami K, et al. Multiobjective optimization for the operation of distributed energy systems considering economic and environmental aspects. Appl Energy, 2010, 87: 3642–3651

    Article  Google Scholar 

  11. Gunantara N. A review of multiobjective optimization: methods and its applications. Cogent Eng, 2018, 5: 1502242

    Article  Google Scholar 

  12. Marler R T, Arora J S. The weighted sum method for multiobjective optimization: new insights. Struct Multidisc Optim, 2010, 41: 853–862

    Article  Google Scholar 

  13. Yang R, Wang L. Multiobjective optimization for decision-making of energy and comfort management in building automation and control. Sustain Cities Soc, 2012, 2: 1–7

    Article  Google Scholar 

  14. Leung M F, Wang J. A collaborative neurodynamic approach to multiobjective optimization. IEEE Trans Neural Netw Learn Syst, 2018, 29: 5738–5748

    Article  MathSciNet  Google Scholar 

  15. Jin Y, Wang H, Chugh T, et al. Data-driven evolutionary optimization: an overview and case studies. IEEE Trans Evol Computat, 2018, 23: 442–458

    Article  Google Scholar 

  16. Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput Intell Mag, 2006, 1: 28–39

    Article  Google Scholar 

  17. Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Trans Syst Man Cybern A, 1998, 28: 26–37

    Article  Google Scholar 

  18. Coello C A C, Lechuga M S. MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), Hawaii, 2002. 1051–1056

  19. Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Computat, 2002, 6: 182–197

    Article  Google Scholar 

  20. Zhang Q F, Li H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Computat, 2007, 11: 712–731

    Article  Google Scholar 

  21. Eichfelder G. An adaptive scalarization method in multiobjective optimization. SIAM J Optim, 2009, 19: 1694–1718

    Article  MathSciNet  Google Scholar 

  22. Burachik R S, Kaya C Y, Rizvi M M. A new scalarization technique and new algorithms to generate Pareto fronts. SIAM J Optim, 2017, 27: 1010–1034

    Article  MathSciNet  Google Scholar 

  23. Nedić A, Liu J. Distributed optimization for control. Annu Rev Control Robot Auton Syst, 2018, 1: 77–103

    Article  Google Scholar 

  24. Yang S, Liu Q, Wang J. A collaborative neurodynamic approach to multiple-objective distributed optimization. IEEE Trans Neural Netw Learn Syst, 2017, 29: 981–992

    Article  Google Scholar 

  25. Chen J, Sayed A H. Distributed Pareto optimization via diffusion strategies. IEEE J Sel Top Signal Process, 2013, 7: 205–220

    Article  Google Scholar 

  26. Li Z, Ding Z. Distributed multiobjective optimization for network resource allocation of multiagent systems. IEEE Trans Cybern, 2021, 51: 5800–5810

    Article  Google Scholar 

  27. Lv F R, Liang J, Gong K X, et al. Pareto domain adaptation. In: Proceedings of Conference on Advances in Neural Information Processing Systems (NeurIPS), 2021. 34: 12917–12929

  28. Zheng Y, Wang D X. A survey of recommender systems with multiobjective optimization. Neurocomputing, 2022, 474: 141–153

    Article  Google Scholar 

  29. Zhao T, Li Z, Ding Z. Consensus-based distributed optimal energy management with less communication in a microgrid. IEEE Trans Ind Inf, 2018, 15: 3356–3367

    Article  Google Scholar 

  30. Zuo Z, Han Q L, Ning B, et al. An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans Ind Inf, 2018, 14: 2322–2334

    Article  Google Scholar 

  31. Feng Z, Hu G, Cassandras C G. Finite-time distributed convex optimization for continuous-time multiagent systems with disturbance rejection. IEEE Trans Control Netw Syst, 2019, 7: 686–698

    Article  MathSciNet  Google Scholar 

  32. Liu H, Zheng W X, Yu W. Continuous-time algorithm based on finite-time consensus for distributed constrained convex optimization. IEEE Trans Automat Contr, 2021, 67: 2552–2559

    Article  MathSciNet  Google Scholar 

  33. Chen G, Li Z. A fixed-time convergent algorithm for distributed convex optimization in multiagent systems. Automatica, 2018, 95: 539–543

    Article  MathSciNet  Google Scholar 

  34. Lv Y, Wen G, Huang T. Adaptive protocol design for distributed tracking with relative output information: a distributed fixed-time observer approach. IEEE Trans Control Netw Syst, 2019, 7: 118–128

    Article  MathSciNet  Google Scholar 

  35. Guo Z, Chen G. Predefined-time distributed optimal allocation of resources: a time-base generator scheme. IEEE Trans Syst Man Cybern Syst, 2022, 52: 438–447

    Article  Google Scholar 

  36. Miettinen K. Nonlinear Multiobjective Optimization. New York: Springer, 2012

    Google Scholar 

  37. Wang R, Zhang Q, Zhang T. Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans Evol Computat, 2016, 20: 821–837

    Article  Google Scholar 

  38. Rockafellar R T. Convex Analysis. New Jersey: Princeton University Press, 1970

    Book  Google Scholar 

  39. Godsil C, Royle G F. Algebraic Graph Theory. New York: Springer, 2001

    Book  Google Scholar 

  40. Zadeh L. Optimality and non-scalar-valued performance criteria. IEEE Trans Automat Contr, 1963, 8: 59–60

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61991403, 61991404, 62133003), Swedish Research Council Distinguished Professor (Grant No. 2017-01078), Swedish Strategic Research Foundation SUCCESS (Grant No. FUS21-0026), and Knut and Alice Wallenberg Foundation Wallenberg Scholar Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Xu, L., Yi, X. et al. Predefined-time distributed multiobjective optimization for network resource allocation. Sci. China Inf. Sci. 66, 170204 (2023). https://doi.org/10.1007/s11432-022-3791-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3791-8

Keywords

Navigation