[go: up one dir, main page]

Skip to main content
Log in

A two-level scheme for multiobjective multidebris active removal mission planning in low Earth orbits

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a two-level multiobjective multidebris active removal mission planning scheme for a multi-nanosatellite active debris removal platform. This scheme consists of a high-level thorough multiobjective transfer planning model to quickly explore a solution space and a low-level trajectory planning scheme to achieve precise rendezvous. A special point orbital maneuver strategy is proposed to coordinate with the impulsive drift-orbit transfer strategy, which resolves the corresponding rendezvous solutions after obtaining multiobjective nondominated transfer solutions. Experiments were conducted to evaluate the architecture of the novel mission planning scheme. The results demonstrate that the multiobjective transfer planning can produce a comprehensive Pareto front for all viable transfer solutions, and the converted corresponding maneuvers can achieve precise rendezvous, which effectively accomplish the goal of multidebris active removal mission planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liou J C. Engineering and technology challenges for active debris removal. Progress Propul Phys, 2013, 4: 735–748

    Article  Google Scholar 

  2. Braun V, Lüpken A, Flegel S, et al. Active debris removal of multiple priority targets. Adv Space Res, 2013, 51: 1638–1648

    Article  Google Scholar 

  3. Liu Y, Yang J N, Wang Y Z, et al. Multi-objective optimal preliminary planning of multi-debris active removal mission in LEO. Sci China Inf Sci, 2017, 60: 072202

    Article  Google Scholar 

  4. Barbee B W, Alfano S, Pinon E, et al. Design of spacecraft missions to remove multiple orbital debris objects. In: Proceedings of IEEE Aerospace Conference, 2011

  5. Cerf M. Multiple space debris collecting mission: optimal mission planning. J Optim Theory Appl, 2015, 167: 195–218

    Article  MathSciNet  MATH  Google Scholar 

  6. Shen H X, Zhang T J, Casalino L, et al. Optimization of active debris removal missions with multiple targets. J Spacecraft Rockets, 2018, 55: 181–189

    Article  Google Scholar 

  7. Zuiani F, Vasile M. Preliminary design of debris removal missions by means of simplified models for low-thrust, many-revolution transfers. Int J Aerospace Eng, 2012, 2012: 1–22

    Article  Google Scholar 

  8. Madakat D, Morio J, Vanderpooten D. Biobjective planning of an active debris removal mission. Acta Astronaut, 2013, 84: 182–188

    Article  Google Scholar 

  9. Bérend N, Olive X. Bi-objective optimization of a multiple-target active debris removal mission. Acta Astronaut, 2016, 122: 324–335

    Article  Google Scholar 

  10. Mikkel J, Inna S. Planning and optimization for a multiple space debris removal mission. In: Proceedings of IEEE Aerospace Conference, 2018

  11. Olympio J T, Frouvelle N. Space debris selection and optimal guidance for removal in the SSO with low-thrust propulsion. Acta Astronaut, 2014, 99: 263–275

    Article  Google Scholar 

  12. Di Carlo M, Martin J M R, Vasile M. Automatic trajectory planning for low-thrust active removal mission in low-earth orbit. Adv Space Res, 2017, 59: 1234–1258

    Article  Google Scholar 

  13. Izzo D, Getzner I, Hennes D, et al. Evolving solutions to TSP variants for active space debris removal. In: Proceedings of Annual Conference on Genetic and Evolutionary Computation, 2015. 1207–1214

  14. Yang J, Hu Y H, Liu Y, et al. A maximal-reward preliminary planning for multi-debris active removal mission in LEO with a greedy heuristic method. Acta Astronaut, 2018, 149: 123–142

    Article  Google Scholar 

  15. Stuart J, Howell K, Wilson R. Application of multi-agent coordination methods to the design of space debris mitigation tours. Adv Space Res, 2016, 57: 1680–1697

    Article  Google Scholar 

  16. Nations U. Technical Report on Space Debris. 1999. https://orbitaldebris.jsc.nasa.gov/library/un_report_on_space_debris99.pdf

  17. Lidtke A A, Lewis H G, Armellin R, et al. Considering the collision probability of active debris removal missions. Acta Astronaut, 2017, 131: 10–17

    Article  Google Scholar 

  18. Lidtke A A, Lewis H G, Armellin R. Impact of high-risk conjunctions on active debris removal target selection. Adv Space Res, 2015, 56: 1752–1764

    Article  Google Scholar 

  19. Anselmo L, Pardini C. Ranking upper stages in low Earth orbit for active removal. Acta Astronaut, 2016, 122: 19–27

    Article  Google Scholar 

  20. Anselmo L, Pardini C. Compliance of the Italian satellites in low Earth orbit with the end-of-life disposal guidelines for space debris mitigation and ranking of their long-term criticality for the environment. Acta Astronaut, 2015, 114: 93–100

    Article  Google Scholar 

  21. Pardini C, Anselmo L. Characterization of abandoned rocket body families for active removal. Acta Astronaut, 2016, 126: 243–257

    Article  Google Scholar 

  22. Tadini P, Tancredi U, Grassi M, et al. Active debris multi-removal mission concept based on hybrid propulsion. Acta Astronaut, 2014, 103: 26–35

    Article  Google Scholar 

  23. Utzmann J, Oswald M, Stabroth S, et al. Ranking and characterization of heavy debris for active removal. In: Proceedings of the 63rd International Astronautical Congress, 2012

  24. Andrenucci M, Pergola P, Ruggiero A. Active Removal of Space Debris — Expanding Foam Application for Active Debris Removal. European Space Agency, Advanced Concepts Team, Ariadna Final Report 10-4611, 2011

  25. Lewis H G, George S, Schwarz B S, et al. Space debris environment impact rating system. In: Proceedings of the 6th European Conference on Space Debris, 2013

  26. Cerf M. Space Debris Cleaning Missions. Latvia: Éditions Universitaires Européennes, 2017

  27. Liu Y, Yang J N. A multi-objective planning method for multi-debris active removal mission in LEO. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, 2017

  28. Yan L, Qu B Y, Zhu Y S, et al. Dynamic economic emission dispatch based on multi-objective pigeon-inspired optimization with double disturbance. Sci China Inf Sci, 2019, 62: 070210

    Article  MathSciNet  Google Scholar 

  29. Qiu H X, Duan H B. Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design. Sci China Tech Sci, 2015, 58: 1915–1923

    Article  Google Scholar 

  30. Wang H D, Zhang Q F, Jiao L C, et al. Regularity model for noisy multiobjective optimization. IEEE Trans Cybern, 2016, 46: 1997–2009

    Article  Google Scholar 

  31. Abdoun O, Abouchabaka J. A comparative study of adaptive crossover operators for genetic algorithms to resolve the traveling salesman problem. 2012. ArXiv:12033097

  32. Hintz G R. Orbital Mechanics and Astrodynamics. Berlin: Springer, 2015

    Book  Google Scholar 

  33. Liou J C. An active debris removal parametric study for LEO environment remediation. Adv Space Res, 2011, 47: 1865–1876

    Article  Google Scholar 

  34. Peng W, Zhang Q F, Li H. Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem. In: Multi-Objective Memetic Algorithms. Berlin: Springer, 2009. 309–324

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61703343, 61790552), Natural Science Foundation of Shaanxi Province (Grant No. 2018JQ6070), and Fundamental Research Funds for the Central Universities (Grant No. 3102018JCC003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Hou, X., Liu, Y. et al. A two-level scheme for multiobjective multidebris active removal mission planning in low Earth orbits. Sci. China Inf. Sci. 65, 152201 (2022). https://doi.org/10.1007/s11432-020-3049-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3049-5

Keywords

Navigation