[go: up one dir, main page]

Skip to main content
Log in

Neural control of hypersonic flight dynamics with actuator fault and constraint

  • Research Paper
  • Special Focus on Advanced Nonlinear Control of Hypersonic Flight Vehicles
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper deals with the control problem of actuator fault and saturation for hypersonic flightvehicles. Different from previous back-stepping design, the scheme is on transforming the dynamics into the“prediction function”. The controller is constructed with high gain observer, while the effect of fault andsaturation is compensated by neural networks. For the input saturation, the auxiliary dynamics is included todesign the adaptive learning law. The neural weights and filtered tracking error are guaranteed to be boundedvia Lyapunov approach. The effectiveness of the proposed method is verified by simulation of winged-conemodel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu B, Shi Z K. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci China Inf Sci,2015, 58: 070201

    Google Scholar 

  2. Xu H, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle. J GuidControl Dynam, 2004, 27: 829–838

    Article  Google Scholar 

  3. Gao D X, Sun Z Q. Fuzzy tracking control design for hypersonic vehicles via TS model. Sci China Inf Sci, 2011, 54:521–528

    Google Scholar 

  4. Ataei A, Wang Q. Non-linear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Contr Theory Appl, 2012, 6: 203–215

    Article  MathSciNet  Google Scholar 

  5. Gibson T E, Crespo L G, Annaswamy A M. Adaptive control of hypersonic vehicles in the presence of modelinguncertainties. In: Proceedings of American Control Conference, Saint Louis, 2009. 3178–3183.

    Google Scholar 

  6. Chavez F R, Schmidt D K. Uncertainty modeling for multivariable-control robustness analysis of elastic high-speedvehicles. J Guid Control Dynam, 1999, 22: 87–95

    Article  Google Scholar 

  7. Xu B, Sun F, Liu H, et al. Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping. IETContr Theory Appl, 2012, 6: 487–497

    Article  MathSciNet  Google Scholar 

  8. Xu B, Wang D, Sun F, et al. Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn, 2012, 70:269–278

    Article  MATH  MathSciNet  Google Scholar 

  9. Fiorentini L, Serrani A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica, 2012, 48: 1248–1261

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhang Z, Hu J. Stability analysis of a hypersonic vehicle controlled by the characteristic model based adaptive controller. Sci China Inf Sci, 2012, 55: 2243–2256

    Article  MATH  MathSciNet  Google Scholar 

  11. Gao D, Sun Z, Luo X, et al. Fuzzy adaptive control for hypersonic vehicle via backstepping method. Contr TheoryAppl, 2008, 5: 805–810

    Google Scholar 

  12. Chen M, Jiang B. Robust attitude control of near space vehicles with time-varying disturbances. Int J Contr AutomatSyst, 2013, 11: 182–187

    Article  MathSciNet  Google Scholar 

  13. Sigthorsson D, Jankovsky P, Serrani A, et al. Robust linear output feedback control of an airbreathing hypersonicvehicle. J Guid Control Dynam, 2008, 31: 1052–1066

    Article  Google Scholar 

  14. Chavez F R, Schmidt D K. Uncertainty modeling for multivariable-control robustness analysis of elastic high-speedvehicles. J Guid Control Dynam, 1999, 22: 87–95

    Article  Google Scholar 

  15. Hu Y N, Yuan Y, Min H B, et al. Multi-objective robust control based on fuzzy singularly perturbed models forhypersonic vehicles. Sci China Inf Sci, 2011, 54: 563–576

    Article  MATH  MathSciNet  Google Scholar 

  16. Xu B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. NonlinearDyn, 2015, 80: 1509–1520

    Google Scholar 

  17. Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. J Guid Control Dynam, 2000, 23: 577–585

    Article  Google Scholar 

  18. Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonicvehicles. J Guid Control Dynam, 2009, 32: 402–417

    Article  Google Scholar 

  19. Gao D X, Sun Z, Du T R. Dynamic surface control for hypersonic aircraft using fuzzy logic system. In: Proceedingsof IEEE International Conference on Automation and Logistics, Jinan,. 2314–2319

  20. Xu B, Huang X, Wang D, et al. Dynamic surface control of constrained hypersonic flight models with parameterestimation and actuator compensation. Asian J Control, 2014, 16: 162–174

    Article  MATH  MathSciNet  Google Scholar 

  21. Li H, Si Y, Wu L, et al. Guaranteed cost control with poles assignment for a flexible air-breathing hypersonic vehicle. Int J Syst Sci, 2011, 42: 863–876

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang N, Wu H N, Guo L. Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles. Nonlinear Dyn, 2014, 78: 2141–2159

    Article  MathSciNet  Google Scholar 

  23. Farrell J A, Polycarpou M, Sharma M, et al. Command filtered backstepping. IEEE Trans Automat Contr, 2009, 54:1391–1395

    Article  MathSciNet  Google Scholar 

  24. Wang D, Huang J. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systemsin strict-feedback form. IEEE Trans Neural Netw, 2005, 16: 195–202

    Article  Google Scholar 

  25. Xu B, Yang C, Shi Z. Reinforcement learning output feedback NN control using deterministic learning technique. IEEETrans Neural Netw Learn Syst, 2014, 25: 635–641

    Article  Google Scholar 

  26. Zhang T P, Ge S S. Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedbackform. Automatica, 2008, 44: 1895–1903

    Article  MATH  MathSciNet  Google Scholar 

  27. Xu B, Shi Z, Yang C, et al. Composite neural dynamic surface control of a class of uncertain nonlinear systems instrict-feedback form. IEEE Trans Cybern, 2014, 44: 2626–2634

    Article  Google Scholar 

  28. Hojati M, Gazor S. Hybrid adaptive fuzzy identification and control of nonlinear systems. IEEE Trans Fuzzy Syst,2002, 10: 198–210

    Article  Google Scholar 

  29. Xu B, Shi Z, Yang C. Composite fuzzy control of a class of uncertain nonlinear systems with disturbance observer.Nonlinear Dyn, 2015, 80: 341–351

    Article  MathSciNet  Google Scholar 

  30. Park J H, Kim S H, Moon C J. Adaptive neural control for strict-feedback nonlinear systems without backstepping. IEEE Trans Neural Netw, 2009, 20: 1204–1209

    Article  Google Scholar 

  31. Xu B, Gao D X, Wang S X. Adaptive neural control based on HGO for hypersonic flight vehicles. Sci China Inf Sci,2011, 54: 511–520

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, Y., Jin, Y. et al. Neural control of hypersonic flight dynamics with actuator fault and constraint. Sci. China Inf. Sci. 58, 1–10 (2015). https://doi.org/10.1007/s11432-015-5338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5338-2

Keywords

Navigation