[go: up one dir, main page]

Skip to main content
Log in

Characteristics, origins, and significance of pyrites in deep-water shales

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

As important metal sulfides in the geochemical cycle of sulfur, the characteristics and formation processes of pyrites can provide useful clues regarding their environment. Based on previous findings, shale pyrites were divided into three major classes (euhedral pyrites, framboidal pyrites (framboids) and metasomatic pyrites) and six sub-classes in this study. At the microscopic scale, each type of pyrite is associated with a different formation process. Framboids are formed by burst nucleation in environments with a homogeneous distribution of nutrients while euhedral pyrites are usually formed on pre-existing sites (such as =FeS on the minerals surface) in the heterogeneous system. Metasomatic pyrites formed by the replacement of other ions in accountable material by iron ions and hydrogen sulfide ions in hydrothermal events. The morphology and isotope value of pyrite provide information to track the origins of their nutrient and characteristics of sulfur and iron pools. In addition, the trace element content of pyrite can serve as a proxy for paleo-ocean trace element abundance, indicating changes in atmospheric oxygen content. Additionally, pyrite can also serves as an indicator of shale gas reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algeo T J, Kuwahara K, Sano H, Bates S, Lyons T, Elswick E, Hinnov L, Ellwood B, Moser J, Maynard J B. 2011. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeogr Palaeoclimatol Palaeoecol, 308: 6583

    Google Scholar 

  • Algeo T J, Luo G M, Song H Y, Lyons T W, Canfield D E. 2015. Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences, 12: 2131–2151

    ADS  Google Scholar 

  • Antler G, Turchyn AV, Ono S, Sivan O, Bosak T. 2017. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction. Geochim Cosmochim Acta, 203: 364–380

    ADS  CAS  Google Scholar 

  • Asael D, Tissot F L H, Reinhard C T, Rouxel O, Dauphas N, Lyons T W, Ponzevera E, Liorzou C, Chéron S. 2013. Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event. Chem Geol, 362: 193–210

    ADS  CAS  Google Scholar 

  • Avetisyan K, Buchshtav T, Kamyshny Jr. A. 2018. Kinetics and mechanism of polysulfides formation by a reaction between hydrogen sulfide and orthorhombic cyclooctasulfur. Geochim Cosmochim Acta, 247: 96–105

    ADS  Google Scholar 

  • Baronov A, Bufkin K, Shaw D W, Johnson B L, Patrick D L. 2015. A simple model of burst nucleation. Phys Chem Chem Phys, 17: 20846–20852

    CAS  PubMed  Google Scholar 

  • Berner R A. 1984. Sedimentary pyrite formation: An update. Geochim Cosmochim Acta, 48: 605–615

    ADS  CAS  Google Scholar 

  • Berner R A. 1985. Sulphate reduction, organic matter decomposition and pyrite formation. Phil Trans R Soc Lond A, 315: 25–38

    ADS  CAS  Google Scholar 

  • Berner Z, Pujol F, Neumann T, Kramar U, Stüben D, Racki G, Simon R. 2006. Contrasting trace element composition of diagenetic and synge-netic pyrites: Implications for the depositional environment. Geophys Res Abstract, 8: 08281

    Google Scholar 

  • Birkholz M. 2014. Modeling the shape of ions in pyrite-type crystals. Crystals, 4: 390–403

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert C J, Rickert D, Widdel F, Gieseke A, Amann R, Jergensen B B, Witte U, Pfannkuche O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623–626

    ADS  CAS  PubMed  Google Scholar 

  • Bond D P G, Wignall P B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bull, 122: 1265–1279

    CAS  Google Scholar 

  • Bowles M W, Mogollön J M, Kasten S, Zabel M, Hinrichs K U. 2014. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities. Science, 344: 889–891

    ADS  CAS  PubMed  Google Scholar 

  • Boyd P W, Ellwood M J. 2010. The biogeochemical cycle of iron in the ocean. Nat Geosci, 3: 675–682

    ADS  CAS  Google Scholar 

  • Bradley A S, Leavitt W D, Schmidt M, Knoll A H, Girguis P R, Johnston D T. 2016. Patterns ofsulfur isotope fractionation during microbial sulfate reduction. Geobiology, 14: 91–101

    CAS  PubMed  Google Scholar 

  • Busigny V, Planavsky N J, Jézéquel D, Crowe S, Louvat P, Moureau J, Viollier E, Lyons T W. 2014. Iron isotopes in an Archean ocean analogue. Geochim Cosmochim Acta, 133: 443–462

    ADS  CAS  Google Scholar 

  • Butler I B, Archer C, Vance D, Oldroyd A, Rickard D. 2005. Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet Sci Lett, 236: 430–442

    ADS  CAS  Google Scholar 

  • Cai C, Hu W, Worden R H. 2001. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in Central Tarim. Mar Pet Geol, 18: 729–741

    CAS  Google Scholar 

  • Cai C, Li H, Li K, Wang D. 2022. Thermochemical sulfate reduction in sedimentary basins and beyond: A review. Chem Geol, 607: 121018

    CAS  Google Scholar 

  • Canfield D E, Raiswell R, Bottrell S H. 1992. The reactivity ofsedimentary iron minerals toward sulfide. Am J Sci, 292: 659–683

    ADS  CAS  Google Scholar 

  • Canfield D E. 2001. Biogeochemistry of sulfur isotopes. Rev Mineral Geochem, 43: 607–636

    CAS  Google Scholar 

  • Canfield D E, Farquhar J, Zerkle A L. 2010. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology, 38: 415–418

    ADS  Google Scholar 

  • Chang X, Huang Y, Chen Z, Hou M. 2020. The microscopic analysis of pyrite framboids and application in paleo-oceanography (in Chinese). Acta Sedimentol Sin, 38: 150–165

    Google Scholar 

  • Chen G, Gang W, Liu Y, Wang N, Jiang C, Sun J. 2019. Organic matter enrichment of the Late Triassic Yanchang Formation (Ordos Basin, China) under dysoxic to oxic conditions: Insights from pyrite framboid size distributions. J Asian Earth Sci, 170: 106–117

    ADS  Google Scholar 

  • Chen G, Chang X, Gang W, Wang N, Zhang P, Cao Q, Xu J. 2020. Anomalous positive pyrite sulfur isotope in lacustrine black shale of the Yanchang Formation, Ordos Basin: Triggered by paleoredox chemistry changes. Mar Pet Geol, 121: 104587

    CAS  Google Scholar 

  • Craddock P R, Dauphas N. 2011. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet Sci Lett, 303: 121–132

    ADS  CAS  Google Scholar 

  • Crosby H A, Johnson C M, Roden E E, Beard B L. 2005. Coupled Fe(II)-Fe (III) electron and atom exchange as a mechanism for Fe isotope frac-tionation during dissimilatory iron oxide reduction. Environ Sci Technol, 39: 6698–6704

    ADS  CAS  PubMed  Google Scholar 

  • Crosby H A, Roden E E, Johnson C M, Beard B L. 2007. The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens. Geobiology, 5: 169–189

    CAS  Google Scholar 

  • Cui H, Kitajima K, Spicuzza M J, Fournelle J H, Denny A, Ishida A, Zhang F, Valley J W. 2018. Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS. Am Mineral, 103: 1362–1400

    ADS  Google Scholar 

  • Curtis M E, Sondergeld C H, Ambrose R J, Rai C S. 2012. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull, 96: 665–677

    CAS  Google Scholar 

  • Czaja A D, Johnson C M, Beard B L, Eigenbrode J L, Freeman K H, Yamaguchi K E. 2010. Iron and carbon isotope evidence for ecosystem and environmental diversity in the similar to 2.7 to 2.5 Ga Hamersley Province, Western Australia. Earth Planet Sci Lett, 292: 170–180

    ADS  CAS  Google Scholar 

  • Czaja A D, Johnson C M, Yamaguchi K E, Beard B L. 2012. Comment on “abiotic pyrite formation produces a large Fe isotope fractionation”. Science, 335: 538

    ADS  CAS  PubMed  Google Scholar 

  • Czaja A D, Van Kranendonk M J, Beard B L, Johnson C M. 2018. A multistage origin for Neoarchean layered hematite-magnetite iron formation from the Weld Range, Yilgarn Craton, Western Australia. Chem Geol, 488: 125–137

    ADS  CAS  Google Scholar 

  • Dauphas N, van Zuilen M, Wadhwa M, Davis A M, Marty B, Janney P E. 2004. Clues from Fe isotope variations on the origin of Early Archean BIFs from greenland. Science, 306: 2077–2080

    ADS  CAS  PubMed  Google Scholar 

  • Ding T, Valkiers S, Kipphardt H, De Bièvre P, Taylor PDP, Gonfiantini R, Krouse R. 2001. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochim Cosmochim Acta, 65: 2433–2437

    ADS  CAS  Google Scholar 

  • Duan Y, Severmann S, Anbar A D, Lyons T W, Gordon G W, Sageman B B. 2010. Isotopic evidence for Fe cycling and repartitioning in ancient oxygen-deficient settings: Examples from black shales of the mid-to-late Devonian Appalachian basin. Earth Planet Sci Lett, 290: 244–253

    ADS  CAS  Google Scholar 

  • Dupeyron J, Decraene M N, Marin-Carbonne J, Busigny V. 2023. Formation pathways of precambrian sedimentary pyrite: Insights from in situ Fe isotopes. Earth Planet Sci Lett, 609: 118070

    CAS  Google Scholar 

  • Eickmann B, Hofmann A, Wille M, Bui T H, Wing B A, Schoenberg R. 2018. Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nat Geosci, 11: 133–138

    ADS  CAS  Google Scholar 

  • Erwin D H, Laflamme M, Tweedt S M, Sperling E A, Pisani D, Peterson K J. 2011. The cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334: 1091–1097

    ADS  CAS  PubMed  Google Scholar 

  • Farrand M. 1970. Framboidal sulphides precipitated synthetically. Mineral Depos, 5: 237–247

    ADS  CAS  Google Scholar 

  • Fike D A, Bradley A S, Rose C V. 2015. Rethinking the ancient sulfur cycle. Annu Rev Earth Planet Sci, 43: 593–622

    ADS  CAS  Google Scholar 

  • Fontecilla-Camps J C. 2022. Nickel and the origin and early evolution of life. Metallomics, 14: mfac016

    PubMed  Google Scholar 

  • Formolo M J, Lyons T W. 2007. Accumulation and preservation of reworked marine pyrite beneath an oxygen-rich devonian atmosphere: Constraints from sulfur isotopes and framboid textures. J Sediment Res, 77: 623–633

    CAS  Google Scholar 

  • Frei R, Gaucher C, Poulton S W, Canfield D E. 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461: 250–253

    ADS  CAS  PubMed  Google Scholar 

  • Gallego-Torres D, Reolid M, Nieto-Moreno V, Martinez-Casado F J. 2015. Pyrite framboid size distribution as a record for relative variations in sedimentation rate: An example on the Toarcian Oceanic Anoxic Event in Southiberian Palaeomargin. Sediment Geol, 330: 59–73

    ADS  CAS  Google Scholar 

  • Goldhaber M B, Orr W L. 1995. Kinetic controls on thermochemical sul fate reduction as a source of sedimentary H2S. Geochem Trans Sediment Sulfur ACS Symp Ser, 612: 412–425

    Google Scholar 

  • Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA, 103: 11358–11363

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham R A. 1971. The mogul base metal deposits county Tipperary, Ireland. Dissertation for Doctoral Degree. London: Western University. 457

    Google Scholar 

  • Gregory D D, Kovarik L, Taylor S D, Perea D E, Owens J D, Atienza N, Lyons T W. 2022. Nanoscale trace-element zoning in pyrite framboids and implications for paleoproxy applications. Geology, 50: 736–740

    ADS  CAS  Google Scholar 

  • Guilbaud R, Butler I B, Ellam R M, Rickard D. 2010. Fe isotope exchange between Fe(II)aq and nanoparticulate mackinawite (FeSm) during na-noparticle growth. Earth Planet Sci Lett, 300: 174–183

    ADS  CAS  Google Scholar 

  • Guilbaud R, Butler I B, Ellam R M. 2011a. Abiotic pyrite formation produces a large Fe isotope fractionation. Science, 332: 1548–1551

    ADS  CAS  PubMed  Google Scholar 

  • Guilbaud R, Butler I B, Ellam R M, Rickard D, Oldroyd A. 2011b. Experimental determination of the equilibrium Fe isotope fractionation between Fe2+aq and FeSm (mackinawite) at 25 and 2°C. Geochim Cosmochim Acta, 75: 2721–2734

    ADS  CAS  Google Scholar 

  • Habicht K S, Canfield D E. 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim Cosmochim Acta, 61: 5351–5361

    ADS  CAS  PubMed  Google Scholar 

  • Habicht K S, Canfield DE. 2001. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology, 29: 555–558

    ADS  CAS  Google Scholar 

  • Habicht K S, Gade M, Thamdrup B, Berg P, Canfield D E. 2002. Calibration of sulfate levels in the Archean ocean. Science, 298: 2372–2374

    ADS  CAS  PubMed  Google Scholar 

  • Haeckel M, van Beusekom J, Wiesner M G, König I. 2001. The impact of the 1991 mount pinatubo tephra fallout on the geochemical environment of the deep-sea sediments in the South China Sea. Earth Planet Sci Lett, 193: 151–166

    ADS  CAS  Google Scholar 

  • Hao F, Guo T, Zhu Y, Cai X, Zou H, Li P. 2008. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China. AAPG Bull, 92: 611–637

    CAS  Google Scholar 

  • Harrison A L, Jew A D, Dustin M K, Thomas D L, Joe-Wong C M, Bargar J R, Johnson N, Brown Gordon E. J, Maher K. 2017. Element release and reaction-induced porosity alteration during shale-hydraulic fracturing fluid interactions. Appl Geochem, 82: 47–62

    ADS  CAS  Google Scholar 

  • Havens S M, Hassler C S, North R L, Guildford S J, Silsbe G, Wilhelm S W, Twiss M R. 2012. Iron plays a role in nitrate drawdown by phyto-plankton in Lake Erie surface waters as observed in lake-wide assessments. Can J Fish Aquat Sci, 69: 369–381

    CAS  Google Scholar 

  • Heard A W, Dauphas N, Guilbaud R, Rouxel O J, Butler I B, Nie N X, Bekker A. 2020. Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric oxygenation. Science, 370: 446–449

    ADS  CAS  PubMed  Google Scholar 

  • Hofmann A, Bekker A, Rouxel O, Rumble D, Master S. 2009. Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis. Earth Planet Sci Lett, 286: 436–445

    ADS  CAS  Google Scholar 

  • Holland H D. 2006. The oxygenation of the atmosphere and oceans. Phil Trans R Soc B, 361: 903–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Cai C, Liu D, Peng Y, Wei T, Jiang Z, Ma R, Jiang L. 2021. Distinguishing microbial from thermochemical sulfate reduction from the upper Ediacaran in South China. Chem Geol, 583: 120482

    CAS  Google Scholar 

  • Jautzy J J, Petts D C, Clark I D, Al T A, Stern R A, Jensen M. 2020. Diagenetic evolution of a sedimentary system (Michigan Basin): Insights from petrography and S-isotope micro-analysis of pyrite. Chem Geol, 541: 119580

    CAS  Google Scholar 

  • Javaux E J, Knoll A H, Walter M R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2: 121–132

    Google Scholar 

  • Jiang L, Worden R H, Yang C. 2018. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality. Geochim Cosmochim Acta, 223: 127–140

    ADS  CAS  Google Scholar 

  • Johnson C M, Beard B L, Roden E E. 2008. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu Rev Earth Planet Sci, 36: 457–493

    ADS  CAS  Google Scholar 

  • Jones D S, Fike DA. 2013. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ34S. Earth Planet Sci Lett, 363: 144–155

    ADS  CAS  Google Scholar 

  • Jørgensen B B, Isaksen M F, Jannasch H W. 1992. Bacterial sulfate reduction above 100°C in Deep-Sea hydrothermal vent sediments. Science, 258: 1756–1757

    ADS  PubMed  Google Scholar 

  • Jørgensen B B, Beulig F, Egger M, Petro C, Scholze C, Roy H. 2019. Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments. Geochim Cosmochim Acta, 254: 231–245

    ADS  Google Scholar 

  • Jørgensen B B. 1982. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature, 296: 643–645

    ADS  Google Scholar 

  • Jørgensen B B, Böttcher M E, Lüschen H, Neretin L N, Volkov I I. 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta, 68: 2095–2118

    ADS  Google Scholar 

  • Kappler A, Bryce C, Mansor M, Lueder U, Byrne J M, Swanner E D. 2021. An evolving view on biogeochemical cycling of iron. Nat Rev Microbiol, 19: 360–374

    CAS  PubMed  Google Scholar 

  • Kashchiev D. 2011. Note: On the critical supersaturation for nucleation. J Chem Phys, 134: 196102

    ADS  PubMed  Google Scholar 

  • Kennedy C, Crosby H, Beard B, Roden E, Johnson C. 2006. Iron isotope fractionation during Fe (II)-hematite interactions. San Francisco: AGU Fall Meeting 2006. B13B–1094

    Google Scholar 

  • Kershaw S, Tang H, Li Y, Guo L. 2018. Oxygenation in carbonate mi-crobialites and associated facies after the end-Permian mass extinction: Problems and potential solutions. J Palaeogeogr, 7: 32–47

    Google Scholar 

  • Kiyosu Y, Krouse H R. 1990. The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochem J, 24: 21–27

    CAS  Google Scholar 

  • Kulp T R, Pratt L M. 2004. Speciation and weathering of selenium in upper cretaceous chalk and shale from South Dakota and Wyoming, USA. Geochim Cosmochim Acta, 68: 3687–3701

    ADS  CAS  Google Scholar 

  • Kump L R. 2008. The rise of atmospheric oxygen. Nature, 451: 277–278

    ADS  CAS  PubMed  Google Scholar 

  • Kunzmann M, Gibson T M, Halverson G P, Hodgskiss M S W, Bui T H, Carozza D A, Sperling E A, Poirier A, Cox G M, Wing B A. 2017. Iron isotope biogeochemistry of Neoproterozoic marine shales. Geochim Cosmochim Acta, 209: 85–105

    ADS  CAS  Google Scholar 

  • Kurzweil F, Drost K, Pasava J, Wille M, Taubald H, Schoeckle D, Schoenberg R. 2015. Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá-Barrandian unit argue against deep ocean oxygenation during the Ediacaran. Geochim Cosmochim Acta, 171: 121–142

    ADS  CAS  Google Scholar 

  • Lalonde K, Mucci A, Ouellet A, Gélinas Y. 2012. Preservation of organic matter in sediments promoted by iron. Nature, 483: 198–200

    ADS  CAS  PubMed  Google Scholar 

  • LaMer V K, Dinegar R H. 1950. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc, 72: 4847–4854

    CAS  Google Scholar 

  • Large R R, Maslennikov V V, Robert F, Danyushevsky L V, Chang Z. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit, Lena Gold Province, Russia. Econ Geol, 102: 1233–1267

    CAS  Google Scholar 

  • Large R R, Halpin J A, Danyushevsky L V, Maslennikov V V, Bull S W, Long J A, Gregory D D, Lounejeva E, Lyons T W, Sack P J, McGol-drick P J, Calver C R. 2014. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Planet Sci Lett, 389: 209–220

    ADS  CAS  Google Scholar 

  • Large R R, Mukherjee I, Gregory D, Steadman J, Corkrey R, Danyushevsky L V. 2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Miner Depos, 54: 485–506

    ADS  CAS  Google Scholar 

  • Large R, Mukherjee I, Danyushevsky L, Gregory D, Steadman J, Corkrey R. 2022. Sedimentary pyrite proxy for atmospheric oxygen: Evaluation of strengths and limitations. Earth-Sci Rev, 227: 103941

    CAS  Google Scholar 

  • Lash G G. 2015. Authigenic barite nodules and carbonate concretions in the upper devonian shale succession of western New York—A record of variable methane flux during burial. Mar Pet Geol, 59: 305–319

    CAS  Google Scholar 

  • Leavitt W D, Halevy I, Bradley A S, Johnston D T. 2013. Influence of sulfate reduction rates on the phanerozoic sulfur isotope record. Proc Natl Acad Sci USA, 110: 11244–11249

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Leventhal J S. 1983. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition. Geochim Cosmochim Acta, 47: 133–137

    ADS  CAS  Google Scholar 

  • Li L, Wing B A, Bui T H, McDermott J M, Slater G F, Wei S, Lacrampe-Couloume G, Lollar B S. 2016. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks. Nat Commun, 7: 13252

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Li C, Fan J, Algeo T J, Yan D, Zhu G, Wu S, Tang S, Cheng M, Jin C. 2019. Sulfate-controlled marine euxinia in the semi-restricted inner Yangtze Sea (South China) during the Ordovician-Silurian transition. Palaeogeogr Palaeoclimatol Palaeoecol, 534: 109281

    Google Scholar 

  • Liao W, Bond D P G, Wang Y, He L, Yang H, Weng Z, Li G. 2017. An extensive anoxic event in the Triassic of the South China Block: A pyrite framboid study from Dajiang and its implications for the cause(s) of oxygen depletion. Palaeogeogr Palaeoclimatol Palaeoecol, 486: 8695

    Google Scholar 

  • Lim Y C, Lin S, Yang T F, Chen Y G, Liu C S. 2011. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan. Mar Pet Geol, 28: 1829–1837

    CAS  Google Scholar 

  • Lin Q, Wang J, Algeo T J, Sun F, Lin R. 2016a. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea. Mar Geol, 379: 100–108

    ADS  CAS  Google Scholar 

  • Lin Q, Wang J, Taladay K, Lu H, Hu G, Sun F, Lin R. 2016b. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea. J Asian Earth Sci, 115: 547–556

    ADS  Google Scholar 

  • Lin Z, Sun X, Peckmann J, Lu Y, Xu L, Strauss H, Zhou H, Gong J, Lu H, Teichert B M A. 2016c. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition ofpyrite: A SIMS study from the South China Sea. Chem Geol, 440: 26–41

    ADS  CAS  Google Scholar 

  • Lin Z Y, Sun X M, Lu Y, Strauss H, Xu L, Gong J L, Teichert B M A, Lu R F, Lu H F, Sun W D, Peckmann J. 2017. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: Insights from the South China Sea. Chem Geol, 449: 15–29

    ADS  CAS  Google Scholar 

  • Liu J, Pellerin A, Wang J, Rickard D, Antler G, Zhao J, Wang Z, Jørgensen B B, Ono S. 2022. Multiple sulfur isotopes discriminate organoclastic and methane-based sulfate reduction by sub-seafloor pyrite formation. Geochim Cosmochim Acta, 316: 309–330

    ADS  CAS  Google Scholar 

  • Liu X, Fike D, Li A, Dong J, Xu F, Zhuang G, Rendle-Bühring R, Wan S. 2019. Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene. Chem Geol, 505: 66–75

    ADS  CAS  Google Scholar 

  • Liu X, Li A, Fike D A, Dong J, Xu F, Zhuang G, Fan D, Yang Z, Wang H. 2020. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation. Mar Geol, 429: 106307

    CAS  Google Scholar 

  • Loucks R G, Ruppel S C. 2007. Mississippian Barnett Shale: Lithofacies and depositional setting ofa deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull, 91: 579–601

    CAS  Google Scholar 

  • Loucks R G, Reed R M, Ruppel S C, Hammes U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull, 96: 1071–1098

    CAS  Google Scholar 

  • Love L. 1966. Review of microscopic pyrite from the devonian chattanooga shale and rammelserg banderz. Fortschr Mineral, 43: 277–309

    Google Scholar 

  • Lu H, Liu J, Wu L, Chen F, Liao Z. 2015. Sulfur isotopes of authigenic pyrits in the sediments of gas-hydrate drilling sites, shenhu area, South China Sea (in Chinese). Earth Sci Front, 22: 200–206

    Google Scholar 

  • Lower S K, Hochella Jr. M F, Beveridge T J. 2001. Bacterial recognition of mineral surfaces: Nanoscale interactions between Shewanella and α-FeOOH. Science, 292: 1360–1363

    ADS  CAS  PubMed  Google Scholar 

  • Lower B H, Shi L, Yongsunthon R, Droubay T C, McCready D E, Lower S K. 2007. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J Bacteriol, 189: 49 44–49 52

    CAS  Google Scholar 

  • Lyons T W, Severmann S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim Cosmochim Acta, 70: 5698–5722

    ADS  CAS  Google Scholar 

  • Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315

    ADS  CAS  PubMed  Google Scholar 

  • Ma Q, Ellis G S, Amrani A, Zhang T, Tang Y. 2008. Theoretical study on the reactivity of sulfate species with hydrocarbons. Geochim Cosmochim Acta, 72: 4565–4576

    ADS  CAS  Google Scholar 

  • Ma X, Zheng J, Zheng G, Xu W, Qian Y, Xia Y, Wang Z, Wang X, Ye X. 2016. Influence of pyrite on hydrocarbon generation during pyrolysis of type-III kerogen. Fuel, 167: 329–336

    CAS  Google Scholar 

  • Machel H G, Krouse H R, Sassen R. 1995. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl Geochem, 10: 373–389

    ADS  CAS  Google Scholar 

  • Machel H G. 2001. Bacterial and thermochemical sulfate reduction in di-agenetic settings—Old and new insights. Sediment Geol, 140: 143–175

    ADS  CAS  Google Scholar 

  • MacLean L C W, Tyliszczak T, Gilbert P U P A, Zhou D, Pray T J, Onstott T C, Southam G. 2008. A high-resolution chemical and structural study offramboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology, 6: 471–480

    CAS  PubMed  Google Scholar 

  • Mango F D. 1992. Transition metal catalysis in the generation ofpetroleum and natural gas. Geochim Cosmochim Acta, 56: 553–555

    ADS  CAS  Google Scholar 

  • Mansor M, Fantle M S. 2019. A novel framework for interpreting pyrite-based Fe isotope records of the past. Geochim Cosmochim Acta, 253: 39–62

    ADS  CAS  Google Scholar 

  • Manzano B K, Fowler M G, Machel H G. 1997. The influence of ther-mochemical sulphate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau river area, Alberta, Canada. Org Geochem, 27: 507–521

    ADS  CAS  Google Scholar 

  • Marin-Carbonne J, Busigny V, Miot J, Rollion-Bard C, Muller E, Drabon N, Jacob D, Pont S, Robyr M, Bontognali T R R, François C, Reynaud S, Van Zuilen M, Philippot P. 2020. In situ Fe and S isotope analyses in pyrite from the 3.2 Ga mendon formation (barberton greenstone belt, south africa): Evidence for early microbial iron reduction. Geobiology, 18: 306–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Yáñez M, Núñez-Useche F, López Martínez R, Gardner R D. 2017. Paleoenvironmental conditions across the Jurassic-Cretaceous boundary in central-eastern Mexico. J South Am Earth Sci, 77: 261–275

    Google Scholar 

  • Mazumdar A, Peketi A, Joao H, Dewangan P, Borole D V, Kocherla M. 2012. Sulfidization in a shallow coastal depositional setting: Diagenetic and palaeoclimatic implications. Chem Geol, 322–323: 68–78

    ADS  Google Scholar 

  • Mckibben M A, Riciputi L R. 1998. Applications of microanalytical techniques to understanding mineralizing processes. Soc Econ Geol, 7: 121–139

    Google Scholar 

  • Miao X, Feng X, Liu X, Li J, Wei J. 2021. Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite. Mar Pet Geol, 133: 105231

    CAS  Google Scholar 

  • Morse J W, Luther III G W. 1999. Chemical influences on trace metalsulfide interactions in anoxic sediments. Geochim Cosmochim Acta, 63: 3373–3378

    ADS  CAS  Google Scholar 

  • Mukherjee I, Large R R, Corkrey R, Danyushevsky L V. 2018. The boring billion, a slingshot for complex life on Earth. Sci Rep, 8: 4432

    ADS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee I, Large R R. 2020. Co-evolution of trace elements and life in Precambrian oceans: The pyrite edition. Geology, 48: 1018–1022

    ADS  CAS  Google Scholar 

  • Naito K, Matsui M, Imai I. 2005. Ability of marine eukaryotic red tide microalgae to utilize insoluble iron. Harmful Algae, 4: 1021–1032

    CAS  Google Scholar 

  • Nie H, Zhang J. 2012. Shale gas accumulation conditions and gas content calculation: A case study of sichuan basin and its periphery in the lower paleozoic (in Chinese). Acta Geol Sin, 86: 349–361

    CAS  Google Scholar 

  • Norman L, Cabanesa D J E, Blanco-Ameijeiras S, Moisset S A M, Hassler C S. 2014. Iron biogeochemistry in aquatic systems: From source to bioavailability. CHIMIA, 68: 764–771

    CAS  PubMed  Google Scholar 

  • Oduro H, Harms B, Sintim H O, Kaufman A J, Cody G, Farquhar J. 2011. Evidence of magnetic isotope effects during thermochemical sulfate reduction. Proc Natl Acad Sci USA, 108: 17635–17638

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohfuji H, Rickard D. 2005. Experimental syntheses of framboids—A review. Earth-Sci Rev, 71: 147–170

    ADS  CAS  Google Scholar 

  • Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol, 67: 551–578

    CAS  Google Scholar 

  • Ohmoto H, Lasaga A C. 1982. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta, 46: 1727–1745

    ADS  CAS  Google Scholar 

  • Ostrander C M, Severmann S, Gordon G W, Kendall B, Lyons T W, Zheng W, Roy M, Anbar A D. 2022. Significance of 56Fe depletions in late-Archean shales and pyrite. Geochim Cosmochim Acta, 316: 87–104

    ADS  CAS  Google Scholar 

  • Pan C, Yu L, Liu J, Fu J. 2006. Chemical and carbon isotopic fractionations of gaseous hydrocarbons during abiogenic oxidation. Earth Planet Sci Lett, 246: 70–89

    ADS  CAS  Google Scholar 

  • Pasquier V, Fike D A, Halevy I. 2021a. Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone. Nat Commun, 12: 4403

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquier V, Bryant R N, Fike D A, Halevy I. 2021b. Strong local, not global, controls on marine pyrite sulfur isotopes. Sci Adv, 7: eabb7403

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Planavsky N J, Reinhard C T, Wang X, Thomson D, McGoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyons T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346: 635–638

    ADS  CAS  PubMed  Google Scholar 

  • Planavsky N, Rouxel O J, Bekker A, Hofmann A, Little C T S, Lyons T W. 2012. Iron isotope composition of some Archean and Proterozoic iron formations. Geochim Cosmochim Acta, 80: 158–169

    ADS  CAS  Google Scholar 

  • Present T M, Paris G, Burke A, Fischer W W, Adkins J F. 2015. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata. Earth Planet Sci Lett, 432: 187–198

    ADS  CAS  Google Scholar 

  • Qin Y W, Zhang M P, Zhou G F. 1998. Iron sources, existing forms and their limiting action on the primary productivity of phytoplankton in seawater (in Chinese). J Oceanogr HuangHai Bohai Seas, 16: 68–76

    Google Scholar 

  • Qiu W J, Zhou M F, Li X C, Huang F, Malpas J. 2021. Constraints of Fe-S-C stable isotopes on hydrothermal and microbial activities during formation of sediment-hosted stratiform sulfide deposits. Geochim Cosmochim Acta, 313: 195–213

    ADS  CAS  Google Scholar 

  • Raiswell R. 1982. Pyrite texture, isotopic composition and the availability of iron. Am J Sci, 282: 1244–1263

    ADS  CAS  Google Scholar 

  • Raiswell R, Berner R A. 1985. Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci, 285: 710–724

    ADS  CAS  Google Scholar 

  • Raiswell R, Canfield D E. 2012. The iron biogeochemical cycle past and present. GeochemPersp, 1: 1–220

    Google Scholar 

  • Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. 2005. Extracellular electron transfer via microbial nanowires. Nature, 435: 1098–1101

    ADS  CAS  PubMed  Google Scholar 

  • Reinhard C T, Planavsky N J, Robbins L J, Partin C A, Gill B C, Lalonde S V, Bekker A, Konhauser K O, Lyons T W. 2013. Proterozoic ocean redox and biogeochemical stasis. Proc Natl Acad Sci USA, 110: 5357–5362

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rickard D T. 1975. Kinetics and mechanism of pyrite formation at low temperatures. Am J Sci, 275: 636–652

    ADS  CAS  Google Scholar 

  • Rickard D. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochim Cosmochim Acta, 61: 115–134

    ADS  CAS  Google Scholar 

  • Rickard D, Morse J W. 2005. Acid volatile sulfide (AVS). Mar Chem, 97: 141–197

    CAS  Google Scholar 

  • Rickard D. 2006. The solubility of FeS. Geochim Cosmochim Acta, 70: 5779–5789

    ADS  CAS  Google Scholar 

  • Rickard D, Grimes S, Butler I, Oldroyd A, Davies K L. 2007. Botanical constraints on pyrite formation. Chem Geol, 236: 228–246

    ADS  CAS  Google Scholar 

  • Rickard D. 2012. Developments in Sedimentology. Cambridge: Cambridge University Press. 65

    Google Scholar 

  • Rickard D. 2019a. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis. Palaeogeogr Palaeoclimatol Palaeoecol, 522: 62–75

    Google Scholar 

  • Rickard D. 2019b. How long does it take a pyrite framboid to form? Earth Planet Sci Lett, 513: 64–68

    ADS  CAS  Google Scholar 

  • Rickard D. 2021. Framboids. Cambridge: Cambridge University Press. 72

    Google Scholar 

  • Rolison J M, Stirling C H, Middag R, Gault-Ringold M, George E, Rijkenberg M J A. 2018. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue. Earth Planet Sci Lett, 488: 1–13

    ADS  CAS  Google Scholar 

  • Rooney M A, Claypool G E, Moses Chung H. 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem Geol, 126: 219–232

    ADS  CAS  Google Scholar 

  • Rust G W. 1935. Colloidal primary copper ores at cornwall mines, Southeastern Missouri. J Geol, 43: 398–426

    ADS  CAS  Google Scholar 

  • Sahoo S K, Planavsky N J, Kendall B, Wang X, Shi X, Scott C, Anbar A D, Lyons T W, Jiang G. 2012. Ocean oxygenation in the wake of the marinoan glaciation. Nature, 489: 546–549

    ADS  CAS  PubMed  Google Scholar 

  • Sakai H, Dickson F W. 1978. Experimental determination of the rate and equilibrium fractionation factors of sulfur isotope exchange between sulfate and sulfide in slightly acid solutions at 300°C and 1000 bars. Earth Planet Sci Lett, 39: 151–161

    ADS  CAS  Google Scholar 

  • Sawlowicz Z. 1993. Pyrite framboids and their development: A new conceptual mechanism. Geol Rundsch, 82: 148–156

    ADS  CAS  Google Scholar 

  • Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456–459

    ADS  CAS  PubMed  Google Scholar 

  • Severmann S, Lyons T W, Anbar A, McManus J, Gordon G. 2008. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology, 36: 487–490

    ADS  CAS  Google Scholar 

  • Severmann S, Johnson C M, Beard B L, McManus J. 2006. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments. Geochim Cosmochim Acta, 70: 2006–2022

    ADS  CAS  Google Scholar 

  • Shanks W C, Bischoff J L, Rosenbauer R J. 1981. Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: Interaction of seawater with fayalite and magnetite at 200–350°C. Geochim Cosmochim Acta, 45: 1977–1995

    ADS  CAS  Google Scholar 

  • Shiley R H, Cluff R M, Dickerson D R, Hinckley C C, Smith G V, Twardowska H, Saporoschenko M. 1981. Correlation of natural gas content to iron species in the New Albany shale group. Fuel, 60: 732–738

    CAS  Google Scholar 

  • Sim M S, Bosak T, Ono S. 2011. Large sulfur isotope fractionation does not require disproportionation. Science, 333: 74–77

    ADS  CAS  PubMed  Google Scholar 

  • Song H Y, Lyons T W, Canfield D E, Algeo T J. 2014. Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences, 11: 13187–13250

    Google Scholar 

  • Stene L P. 1979. Polyframboidal pyrite in the tills ofsouthwestern Alberta. Can J Earth Sci, 16: 2053–2057

    Google Scholar 

  • Sweeney R E, Kaplan I R. 1973. Pyrite framboid formation; laboratory synthesis and marine sediments. Econ Geol, 68: 618–634

    CAS  Google Scholar 

  • Syverson D D, Borrok D M, Seyfried Jr. W E. 2013. Experimental determination of equilibrium Fe isotopic fractionation between pyrite and dissolved Fe under hydrothermal conditions. Geochim Cosmochim Acta, 122: 170–183

    ADS  CAS  Google Scholar 

  • Tagliabue A, Bowie A R, Boyd P W, Buck K N, Johnson K S, Saito M A. 2017. The integral role of iron in ocean biogeochemistry. Nature, 543: 51–59

    ADS  CAS  PubMed  Google Scholar 

  • Tankere-Muller S, Zhang H, Davison W, Finke N, Larsen O, Stahl H, Glud R N. 2007. Fine scale remobilisation of Fe, Mn, Co, Ni, Cu and Cd in contaminated marine sediment. Mar Chem, 106: 192–207

    CAS  Google Scholar 

  • Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev Geophys, 33: 241–265

    ADS  Google Scholar 

  • Tokody L. 1931. Pyritformen und -fundorte. Z für Kristallographie-Crys-talline Mater, 80: 255–348

    CAS  Google Scholar 

  • Treude T, Niggemann J, Kallmeyer J, Wintersteller P, Schubert C J, Boetius A, Jergensen B B. 2005. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim Cosmochim Acta, 69: 2767–2779

    ADS  CAS  Google Scholar 

  • Wan M, Shchukarev A, Lohmayer R, Planer-Friedrich B, Peiffer S. 2014. Occurrence of surface polysulfides during the interaction between Ferric (Hydr)oxides and Aqueous sulfide. Environ Sci Technol, 48: 5076–5084

    ADS  CAS  PubMed  Google Scholar 

  • Wang D. 2012. Redox chemistry of molybdenum in natural waters and its involvement in biological evolution. Front Microbiol, 3: 427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Mbah C F, Przybilla T, Apeleo Zubiri B, Spiecker E, Engel M, Vogel N. 2018. Magic number colloidal clusters as minimum free energy structures. Nat Commun, 9: 5259

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Huang Y, Wang C, Feng Z, Huang Q. 2013. Pyrite morphology in the first member of the late Cretaceous Qingshankou formation, Songliao Basin, Northeast China. Palaeogeogr Palaeoclimatol Palaeoecol, 385: 125–136

    Google Scholar 

  • Wang Q, Lu H, Shen C, Liu J, Peng P, Hsu C S. 2014. Impact of inorganically bound sulfur on late shale gas generation. Energy Fuels, 28: 785–793

    CAS  Google Scholar 

  • Wang S J, Sun W D, Huang J, Zhai S K, Li H M. 2020. Coupled Fe-S isotope composition of sulfide chimneys dominated by temperature heterogeneity in seafloor hydrothermal systems. Sci Bull, 65: 1767–1774

    CAS  Google Scholar 

  • Wang W, Hu Y, Muscente A D, Cui H, Guan C, Hao J, Zhou C. 2021. Revisiting Ediacaran sulfur isotope chemostratigraphy with in situ na-noSIMS analysis of sedimentary pyrite. Geology, 49: 611–616

    ADS  CAS  Google Scholar 

  • Wei H, Chen D, Wang J, Yu H, Tucker M E. 2012. Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies. Palaeogeogr Palaeoclimatol Palaeoecol, 353–355: 73–86

    Google Scholar 

  • Wei H, Algeo T J, Yu H, Wang J, Guo C, Shi G. 2015. Episodic euxinia in the Changhsingian (late Permian) of South China: Evidence from framboidal pyrite and geochemical data. Sediment Geol, 319: 78–97

    ADS  CAS  Google Scholar 

  • Wei H, Wei X, Qiu Z, Song H, Shi G. 2016. Redox conditions across the G-L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions. Chem Geol, 440: 1–14

    ADS  CAS  Google Scholar 

  • Welch S A, Beard B L, Johnson C M, Braterman P S. 2003. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim Cosmochim Acta, 67: 4231–4250

    ADS  CAS  Google Scholar 

  • Wells M, Basu P, Stolz J F. 2021. The physiology and evolution of microbial selenium metabolism. Metallomics, 13: mfab024

    PubMed  Google Scholar 

  • Wilkin R T, Barnes H L, Brantley S L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim Cosmochim Acta, 60: 3897–3912

    ADS  CAS  Google Scholar 

  • Wilkin R T, Barnes H L. 1997. Formation processes of framboidal pyrite. Geochim Cosmochim Acta, 61: 323–339

    ADS  CAS  Google Scholar 

  • Wille M, Kramers J D, Nägler T F, Beukes N J, Schröder S, Meisel T, Lacassie J P, Voegelin A R. 2007. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim Cosmochim Acta, 71: 2417–2435

    ADS  CAS  Google Scholar 

  • Wignall P B, Newton R, Brookfield M E. 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeogr Palaeoclimatol Palaeoecol, 216: 183–188

    Google Scholar 

  • Wignall P B, Bond DPG, Kuwahara K, Kakuwa Y, Newton R J, Poulton S W. 2010. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Glob Planet Change, 71: 109–123

    ADS  Google Scholar 

  • Wu C, Zhang M, Ma W, Liu Y, Xiong D, Sun L, Tuo J. 2014. Organic matter characteristic and sedimentary environment of the lower cambrian niutitang shale in southeastern Chongqing (in Chinese). Nat Gas Geosci, 25: 1267–1274

    CAS  Google Scholar 

  • Wu J, Liang C, Hu Z, Yang R, Xie J, Wang R, Zhao J. 2019. Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin. Mar Pet Geol, 101: 556–565

    CAS  Google Scholar 

  • Yan H, Pi D, Jiang S Y, Hao W, Cui H, Robbins L J, Mänd K, Li L, Planavsky N J, Konhauser K O. 2020. Hydrothermally induced 34S enrichment in pyrite as an alternative explanation of the Late-Devonian sulfur isotope excursion in South China. Geochim Cosmochim Acta, 283: 1–21

    ADS  CAS  Google Scholar 

  • Yang X Y, Gong Y M. 2011. Pyrite framboid: Indicator of environments and life (in Chinese). Earth Sci, 36: 643–658

    CAS  Google Scholar 

  • Yoshiya K, Nishizawa M, Sawaki Y, Ueno Y, Komiya T, Yamada K, Yoshida N, Hirata T, Wada H, Maruyama S. 2012. In situ iron isotope analyses of pyrite and organic carbon isotope ratios in the Fortescue group: Metabolic variations of a late Archean ecosystem. Precambrian Res, 212–213: 169–193

    ADS  Google Scholar 

  • Zhang F F, Zhu X K, Yan B, Kendall B, Peng X, Li J, Algeo T J, Romaniello S. 2015. Oxygenation of a cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions. Earth Planet Sci Lett, 429: 11–19

    ADS  CAS  Google Scholar 

  • Zhang H, Davison W, Mortimer R J G, Krom M D, Hayes P J, Davies I M. 2002. Localised remobilization of metals in a marine sediment. Sci Total Environ, 296: 175–187

    ADS  CAS  PubMed  Google Scholar 

  • Zhang S, Wang H, Wang X, Ye Y. 2022. The Mesoproterozoic oxygenation event. Sci China Earth Sci, 64: 2043–2068

    ADS  Google Scholar 

  • Zhang T, Ellis G S, Wang K-S, Walters C C, Kelemen S R, Gillaizeau B, Tang Y. 2007. Effect of hydrocarbon type on thermochemical sulfate reduction. Org Geochem, 38: 897–910

    ADS  CAS  Google Scholar 

  • Zhang T, Ellis G S, Ma Q, Amrani A, Tang Y. 2012. Kinetics of un-catalyzed thermochemical sulfate reduction by sulfur-free paraffin. Geochim Cosmochim Acta, 96: 1–17

    ADS  Google Scholar 

  • Zhang Y, Gladyshev V N. 2010. General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni, and Se. J Biol Chem, 285: 3393–3405

    CAS  PubMed  Google Scholar 

  • Zhang Y, Gladyshev V N. 2011. Comparative genomics of trace element dependence in biology. J Biol Chem, 286: 23623–23629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou C, Qiu Z, Wei H, Dong D, Lu B. 2018. Euxinia caused the late ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 511: 1–11

    Google Scholar 

  • Zuo Q, Xu Y, Yu B, Zhang C, Zhang Y, Hou C, Zhang L, Sun M. 2021. NanoSIMS sulfur isotope studies of pyrite from the Early paleozoic marine shale: Implications for the sedimentary environment. Mar Pet Geol, 124: 104802

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42072164, 42272119, 41821002), the Shandong Provincial Key Research and Development Program, China (Grant No. 2020ZLYS08), the Taishan Scholars Program, China (Grant No. TSQN201812030), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2022CX06001A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Ji, S., Cao, Y. et al. Characteristics, origins, and significance of pyrites in deep-water shales. Sci. China Earth Sci. 67, 313–342 (2024). https://doi.org/10.1007/s11430-022-1200-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1200-0

Keywords

Navigation