Abstract
Scientific applications at exascale generate and analyze massive amounts of data. A critical requirement of these applications is the capability to access and manage this data efficiently on exascale systems. Parallel I/O, the key technology enables moving data between compute nodes and storage, faces monumental challenges from new applications, memory, and storage architectures considered in the designs of exascale systems. As the storage hierarchy is expanding to include node-local persistent memory, burst buffers, etc., as well as disk-based storage, data movement among these layers must be efficient. Parallel I/O libraries of the future should be capable of handling file sizes of many terabytes and beyond. In this paper, we describe new capabilities we have developed in Hierarchical Data Format version 5 (HDF5), the most popular parallel I/O library for scientific applications. HDF5 is one of the most used libraries at the leadership computing facilities for performing parallel I/O on existing HPC systems. The state-of-the-art features we describe include: Virtual Object Layer (VOL), Data Elevator, asynchronous I/O, full-featured single-writer and multiple-reader (Full SWMR), and parallel querying. In this paper, we introduce these features, their implementations, and the performance and feature benefits to applications and other libraries.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Folk M, Heber G, Koziol Q, Pourmal E, Robinson D. An overview of the HDF5 technology suite and its applications. In Proc. the 2011 EDBT/ICDT Workshop on Array Databases, March 2011, pp.36-47.
Li J W, Liao W K, Choudhary A N et al. Parallel netCDF: A high-performance scientific I/O interface. In Proc. the 2003 ACM/IEEE Conference on Supercomputing, November 2003, Article No. 39.
Lofstead J, Zheng F, Klasky S, Schwan K. Adaptable, metadata rich IO methods for portable high performance IO. In Proc. the 23rd IEEE International Symposium on Parallel Distributed Processing, May 2009, Article No. 44.
Dong B, Byna S, Wu K S et al. Data elevator: Lowcontention data movement in hierarchical storage system. In Proc. the 23rd IEEE International Conference on High Performance Computing, December 2016, pp.152-161.
Dong B, Wang T, Tang H, Koziol Q, Wu K, Byna S. ARCHIE: Data analysis acceleration with array caching in hierarchical storage. In Proc. the 2018 IEEE International Conference on Big Data, December 2018, pp.211-220.
Seo S, Amer A, Balaji P et al. Argobots: A lightweight lowlevel threading and tasking framework. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(3): 512-526.
Wu K. FastBit: An efficient indexing technology for accelerating data-intensive science. Journal of Physics: Conference Series, 2005, 16(16): 556-560.
Racah E, Beckham C, Maharaj T, Kahou S E, Prabhat, Pal C. ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In Proc. the 31st Annual Conference on Neural Information Processing Systems, December 2017, pp.3402-3413.
Byna S, Chou J C Y, R¨ubel O et al. Parallel I/O, analysis, and visualization of a trillion particle simulation. In Proc. the International Conference on High Performance Computing, Networking, Storage and Analysis, November 2012, Article No. 59.
Chen J H, Choudhary A, de Supinski B et al. Terascale direct numerical simulations of turbulent combustion using S3D. Computational Science & Discovery, 2009, 2(1).
Dong B, Wu K S, Byna S, Liu J L, Zhao W J, Rusu F. ArrayUDF: User-defined scientific data analysis on arrays. In Proc. the 26th International Symposium on High-Performance Parallel and Distributed Computing, June 2017, pp.53-64.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
ESM 1
(PDF 1080 kb)
Rights and permissions
About this article
Cite this article
Byna, S., Breitenfeld, M.S., Dong, B. et al. ExaHDF5: Delivering Efficient Parallel I/O on Exascale Computing Systems. J. Comput. Sci. Technol. 35, 145–160 (2020). https://doi.org/10.1007/s11390-020-9822-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11390-020-9822-9