[go: up one dir, main page]

Skip to main content
Log in

Mechanism of secondary organic aerosol formation from the reaction of isoprene with sulfoxy radicals

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Isoprene can react with sulfoxy radicals (SO4•− and SO3•−) to form organosulfur compounds in aqueous phase, and the organosulfur compounds are important compositions of secondary organic aerosols (SOAs). To make sure the specific configurations of the products and the role of SO4•− and SO3•− in the formation of organosulfur compounds, the reaction mechanisms are studied by theoretical calculations. The lowest Gibbs free energy barrier of addition of SO3•− onto isoprene is 24.06 kcal mol−1 at C4 site, and its rate constant is 1.30 × 10−11 M−1 s−1 at 298 K and 1 atm. And the Gibbs free energy barriers of addition of SO4•− onto isoprene at C1 and C4 sites are barrierless and 0.92 kcal mol−1; the rate constants of these two addition processes are 6.85 × 109 and 1.17 × 105 M−1 s−1 at 298 K and 1 atm. It elucidates that organosulfates are easier to be formed. As for the products P1 (with alcohol group) and P2 (with aldehyde group), the lowest Gibbs free energy barrier of the formation of P1 is 3.17 kcal mol−1, and that of the formation of P2 is 15.84 kcal mol−1, which means that the product with alcohol group is easier to be formed than that with aldehyde group. This work provides a reference for the formation of organosulfur compounds in aqueous phase, and it may help to understand the SOA formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. The data is available on request from corresponding author.

References

  • An Z, Sun J, Han D, Mei Q, Wei B, Wang X, He M (2019) Theoretical study on the mechanisms, kinetics and ecotoxicity assessment of OH-initiated reactions of guaiacol in atmosphere and wastewater. Sci Total Environ 685:729–740

    Article  CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101

    Article  CAS  Google Scholar 

  • Bader RF, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  • Buxton GV, McGowan S, Salmon GA, Williams JE, Wood ND (1996) A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S (IV): a pulse and γ-radiolysis study. Atmos Environ 30:2483–2493

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al (2009) Gaussian 09 revision B.01. Wallingford CT

  • Fuchs H, Hofzumahaus A, Rohrer F, Bohn B, Brauers T, Dorn HP, Häseler R, Holland F, Kaminski M, Li X, Lu K, Nehr S, Tillmann R, Wegener R, Wahner A (2013) Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation. Nat Geosci 6:1023–1026

    Article  CAS  Google Scholar 

  • Fukui K (1981) The path of chemical reactions - the IRC approach. Accounts Chem Res 14:363–368

    Article  CAS  Google Scholar 

  • Galano A, Alvarez-Idaboy JR, Francisco-Márquez M, Medina ME (2012) A quantum chemical study on the free radical scavenging activity of tyrosol and hydroxytyrosol. Theor Chem Accounts 131:1–12

    Google Scholar 

  • Guenther A (2002) The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 49:837–844

    Article  CAS  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res - Atmos 100:8873–8892

    Article  CAS  Google Scholar 

  • Herrmann H, Ervens B, Jacobi HW, Wolke R, Nowacki P, Zellner R (2000) CAPRAM2.3: a chemical aqueous phase radical mechanism for tropospheric chemistry. J Atmos Chem 36:231–284

    Article  CAS  Google Scholar 

  • Hratchian HP, Schlegel HB (2004) Accurate reaction paths using a Hessian based predictor–corrector integrator. J Chem Phys 120:9918–9924

    Article  CAS  Google Scholar 

  • Hratchian HP, Schlegel HB (2005) Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. J Chem Theory Comput 1:61–69

    Article  CAS  Google Scholar 

  • Huie RE, Neta P (1984) Chemical behavior of sulfur trioxide(1-) (SO3) and sulfur pentoxide(1-) (SO5) radicals in aqueous solutions. J Chem Phys 88:5665–5669

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  • Iinuma Y, Müller C, Böge O, Gnauk T, Herrmann H (2007) The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions. Atmos Environ 41:5571–5583

    Article  CAS  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Legault CYC (2009) CYLview, 1.0b. Universite de Sherbrooke

  • Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  • Mao J, Paulot F, Jacob DJ, Cohen RC, Crounse JD, Wennberg PO, Keller CA, Hudman RC, Barkley MP, Horowitz LW (2013) Ozone and organic nitrates over the eastern United States: sensitivity to isoprene chemistry. J Geophys Res - Atmos 118:256–268

    Google Scholar 

  • Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  Google Scholar 

  • Nozière B, Ekström S, Alsberg T, Holmström S (2010) Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys Res Lett 37:L05806

    Article  Google Scholar 

  • Rudzinski KJ (2004) Degradation of isoprene in the presence of sulphoxy radical anions. J Atmos Chem 48:191–216

    Article  CAS  Google Scholar 

  • Rudziński KJ, Gmachowski L, Kuznietsova I (2009) Reactions of isoprene and sulphoxy radical-anions – a possible source of atmospheric organosulphites and organosulphates. Atmos Chem Phys 9:2129–2140

    Article  Google Scholar 

  • Rudziński KJ, Szmigielski R, Kuznietsova I, Wach P, Staszek D (2016) Aqueous-phase story of isoprene – a mini-review and reaction with HONO. Atmos Environ 130:163–171

    Article  Google Scholar 

  • Shiroudi A, Deleuze MS, Canneaux S (2015) Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the O2 addition reaction pathways. Phys Chem Chem Phys 17:13719–13732

    Article  CAS  Google Scholar 

  • Surratt JD, Kroll JH, Kleindienst TE, Edney EO, Claeys M, Sorooshian A, Ng NL, Offenberg JH, Lewandowski M, Jaoui M, Flagan RC, Seinfeld JH (2007a) Evidence for organosulfates in secondary organic aerosol. Environ Sci Technol 41:517–527

    Article  CAS  Google Scholar 

  • Surratt JD, Lewandowski M, Offenberg JH, Jaoui M, Kleindienst TE, Edney EO, Seinfeld JH (2007b) Effect of acidity on secondary organic aerosol formation from isoprene. Environ Sci Technol 41:5363–5369

    Article  CAS  Google Scholar 

  • Szmigielski R (2016) Evidence for C5 organosulfur secondary organic aerosol components from in-cloud processing of isoprene: role of reactive SO4 and SO3 radicals. Atmos Environ 130:14–22

    Article  CAS  Google Scholar 

  • Tapia O, Goscinski O (1975) Self-consistent reaction field theory of solvent effects. Mol Phys 29:1653–1661

    Article  CAS  Google Scholar 

  • Truhlar DG (1985) Nearly encounter-controlled reactions: the equivalence of the steady-state and diffusional viewpoints. J Chem Educ 62:104

    Article  CAS  Google Scholar 

  • van Pinxteren D, Plewka A, Hofmann D, Müller K, Kramberger H, Svrcina B, Bächmann K, Jaeschke W, Mertes S, Collett JL, Herrmann H (2005) Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): organic compounds. Atmos Environ 39:4305–4320

    Article  Google Scholar 

  • Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (21976109), the Natural Science Foundation of Shandong Province (ZR2018MB043), the Fundamental Research Funds of Shandong University (2018JC027), and Shandong Province Key Research and Development Program (2019GSF109037).

Author information

Authors and Affiliations

Authors

Contributions

Wen Liu: data curation, validation, and writing-original draft preparation; Guochun Lv: validation; Chenxi Zhang: methodology, reviewing, and editing; Xiaomin Sun: conceptualization, funding acquisition, reviewing, and editing

Corresponding authors

Correspondence to Chenxi Zhang or Xiaomin Sun.

Ethics declarations

Ethics approval

This study did not use any kind of human participants or human data, which require any kind of approval.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 6163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Lv, G., Zhang, C. et al. Mechanism of secondary organic aerosol formation from the reaction of isoprene with sulfoxy radicals. Environ Sci Pollut Res 28, 42562–42569 (2021). https://doi.org/10.1007/s11356-021-13539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13539-9

Keywords

Navigation