[go: up one dir, main page]

Skip to main content

Advertisement

Log in

7,8-Dihydroxyflavone protects retinal ganglion cells against chronic intermittent hypoxia-induced oxidative stress damage via activation of the BDNF/TrkB signaling pathway

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Chronic intermittent hypoxia (CIH) plays a key role in the complications of obstructive sleep apnea (OSA), which is strongly associated with retinal and optic nerve diseases. Additionally, the brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling pathway plays an important protective role in neuronal injury. In the present study, we investigated the role of 7,8-dihydroxyflavone (7,8-DHF) in regulating CIH-induced injury in mice retinas and rat primary retinal ganglion cells (RGCs).

Methods

C57BL/6 mice and in vitro primary RGCs were exposed to CIH or normoxia and treated with or without 7,8-DHF. The mice eyeballs or cultured cells were then taken for histochemistry, immunofluorescence or biochemistry, and the protein expression of the BDNF/TrkB signaling pathway analysis.

Results

Our results showed that CIH induced oxidative stress (OS) in in vivo and in vitro models and inhibited the conversion of BDNF precursor (pro-BDNF) to a mature form of BDNF, which increased neuronal cell apoptosis. 7,8-DHF reduced the production of reactive oxygen species (ROS) caused by CIH and effectively activated TrkB signals and downstream protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) survival signaling pathways, which upregulated the expression of mature BDNF. ANA-12 (a TrkB specific inhibitor) blocked the protective effect of 7,8-DHF.

Conclusion

In short, the activation of the BDNF/TrkB signaling pathway alleviated CIH-induced oxidative stress damage of the optic nerve and retinal ganglion cells. 7,8-DHF may serve as a promising agent for OSA related neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lyons MM, Bhatt NY, Pack AI et al (2020) Global burden of sleep-disordered breathing and its implications. Respirology (Carlton, Vic) 25(7):690–702. https://doi.org/10.1111/resp.13838

    Article  Google Scholar 

  2. Light M, McCowen K, Malhotra A et al. (2018) Sleep apnea, metabolic disease, and the cutting edge of therapy. Metabol: Clin Exper 84:94–98. https://doi.org/10.1016/j.metabol.2017.09.004

  3. Yang HK, Park SJ, Byun SJ et al (2019) Obstructive sleep apnoea and increased risk of non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 103(8):1123–1128. https://doi.org/10.1136/bjophthalmol-2018-312910

    Article  PubMed  Google Scholar 

  4. Fan YY, Su WW, Liu CH et al (2019) Correlation between structural progression in glaucoma and obstructive sleep apnea. Eye (Lond) 33(9):1459–1465. https://doi.org/10.1038/s41433-019-0430-2

    Article  Google Scholar 

  5. Javaheri S, Qureshi Z, Golnik K (2011) Resolution of papilledema associated with OSA treatment. J Clin Sleep Med 7(4):399–400. https://doi.org/10.5664/jcsm.1202

    Article  PubMed  PubMed Central  Google Scholar 

  6. Agard E, El Chehab H, Vie AL et al (2018) Retinal vein occlusion and obstructive sleep apnea: a series of 114 patients. Acta Ophthalmol 96(8):e919–e925. https://doi.org/10.1111/aos.13798

    Article  PubMed  Google Scholar 

  7. Chen YC, Hsu PY, Hsiao CC et al (2019) Epigenetics: a potential mechanism involved in the pathogenesis of various adverse consequences of obstructive sleep apnea. Int J Mol Sci 20(12):2937. https://doi.org/10.3390/ijms20122937

    Article  CAS  PubMed Central  Google Scholar 

  8. Xie H, Yung WH (2012) Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: a role for brain-derived neurotrophic factor. Acta Pharmacol Sin 33(1):5–10. https://doi.org/10.1038/aps.2011.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kimura A, Namekata K, Guo X et al (2016) Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int J Mol Sci 17(9):1584. https://doi.org/10.3390/ijms17091584

    Article  CAS  PubMed Central  Google Scholar 

  10. Liu C, Chan CB, Ye K (2016) 7,8-Dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Translat Neurodegen 5:2. https://doi.org/10.1186/s40035-015-0048-7

    Article  CAS  Google Scholar 

  11. Zhao J, Du J, Pan Y et al (2019) Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radical Biol Med 130:557–567. https://doi.org/10.1016/j.freeradbiomed.2018.11.024

    Article  CAS  Google Scholar 

  12. Aytan N, Choi JK, Carreras I et al (2018) Protective effects of 7,8-dihydroxyflavone on neuropathological and neurochemical changes in a mouse model of Alzheimer’s disease. Eur J Pharmacol 828:9–17. https://doi.org/10.1016/j.ejphar.2018.02.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie S, Deng Y, Pan YY et al (2015) Melatonin protects against chronic intermittent hypoxia-induced cardiac hypertrophy by modulating autophagy through the 5′ adenosine monophosphate-activated protein kinase pathway. Biochem Biophys Res Commun 464(4):975–981. https://doi.org/10.1016/j.bbrc.2015.06.149

    Article  CAS  PubMed  Google Scholar 

  14. Musada GR, Dvoriantchikova G, Myer C et al (2020) The effect of extrinsic Wnt/β-catenin signaling in Muller glia on retinal ganglion cell neurite growth. Dev Neurobiol 80(3–4):98–110. https://doi.org/10.1002/dneu.22741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ren J, Liu W, Li GC et al (2018) Atorvastatin attenuates myocardial hypertrophy induced by chronic intermittent hypoxia in vitro partly through miR-31/PKCε pathway. Curr Med Sci 38(3):405–412. https://doi.org/10.1007/s11596-018-1893-2

    Article  CAS  PubMed  Google Scholar 

  16. Mentek M, Aptel F, Godin-Ribuot D et al (2018) Diseases of the retina and the optic nerve associated with obstructive sleep apnea. Sleep Med Rev 38:113–130. https://doi.org/10.1016/j.smrv.2017.05.003

    Article  PubMed  Google Scholar 

  17. Shiba T, Takahashi M, Sato Y et al (2014) Relationship between severity of obstructive sleep apnea syndrome and retinal nerve fiber layer thickness. Am J Ophthalmol 157(6):1202–1208. https://doi.org/10.1016/j.ajo.2014.01.028

    Article  PubMed  Google Scholar 

  18. Moghimi S, Ahmadraji A, Sotoodeh H et al (2013) Retinal nerve fiber thickness is reduced in sleep apnea syndrome. Sleep Med 14(1):53–57. https://doi.org/10.1016/j.sleep.2012.07.004

    Article  PubMed  Google Scholar 

  19. Mentek M, Morand J, Baldazza M et al (2018) Chronic intermittent hypoxia alters rat ophthalmic artery reactivity through oxidative stress, endothelin and endothelium-derived hyperpolarizing pathways. Invest Ophthalmol Vis Sci 59(12):5256–5265. https://doi.org/10.1167/iovs.18-25151

    Article  CAS  PubMed  Google Scholar 

  20. McMonnies C (2018) Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. J Optometry 11(1):3–9. https://doi.org/10.1016/j.optom.2017.06.002

    Article  Google Scholar 

  21. Xie H, Leung KL, Chen L et al (2010) Brain-derived neurotrophic factor rescues and prevents chronic intermittent hypoxia-induced impairment of hippocampal long-term synaptic plasticity. Neurobiol Dis 40(1):155–162. https://doi.org/10.1016/j.nbd.2010.05.020

    Article  CAS  PubMed  Google Scholar 

  22. An JR, Zhao YS, Luo LF et al (2020) Huperzine A, reduces brain iron overload and alleviates cognitive deficit in mice exposed to chronic intermittent hypoxia. Life Sci 250:117573. https://doi.org/10.1016/j.lfs.2020.117573

    Article  CAS  PubMed  Google Scholar 

  23. Du R, Wang X, He S (2020) BDNF improves axon transportation and rescues visual function in a rodent model of acute elevation of intraocular pressure. Sci China Life Sci 63(9):1–10. https://doi.org/10.1007/s11427-019-1567-0

    Article  CAS  Google Scholar 

  24. Jang SW, Liu X, Yepes M et al (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci USA 107(6):2687–2692. https://doi.org/10.1073/pnas.0913572107

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Chan CB, Jang SW et al (2010) A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J Med Chem 53(23):8274–8286. https://doi.org/10.1021/jm101206p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andero R, Heldt SA, Ye K et al (2011) Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am J Psychiatry 168(2):163–172. https://doi.org/10.1176/appi.ajp.2010.10030326

    Article  PubMed  Google Scholar 

  27. García-Díaz Barriga G, Giralt A, Anglada-Huguet M et al (2017) 7,8-Dihydroxyflavone ameliorates cognitive and motor deficits in a Huntington’s disease mouse model through specific activation of the PLCγ1 pathway. Hum Mol Genet 26(16):3144–3160. https://doi.org/10.1093/hmg/ddx198

    Article  CAS  PubMed  Google Scholar 

  28. Yu X, Liu Q, Wang X et al (2018) 7,8-Dihydroxyflavone ameliorates high-glucose induced diabetic apoptosis in human retinal pigment epithelial cells by activating TrkB. Biochem Biophys Res Commun 495(1):922–927. https://doi.org/10.1016/j.bbrc.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  29. Huang HM, Huang CC, Tsai MH et al (2018) Systemic 7,8-dihydroxyflavone treatment protects immature retinas against hypoxic-ischemic injury via Müller glia regeneration and MAPK/ERK activation. Invest Ophthalmol Vis Sci 59(7):3124–3135. https://doi.org/10.1167/iovs.18-23792

    Article  CAS  PubMed  Google Scholar 

  30. Emili M, Guidi S, Uguagliati B et al. (2020) Treatment with the flavonoid 7,8-dihydroxyflavone: a promising strategy for a constellation of body and brain disorders. Critic Rev Food Sci Nutri:1–38. https://doi.org/10.1080/10408398.2020.1810625

  31. Ma R, Zhang J, Liu X et al (2016) 7,8-DHF treatment induces Cyr61 expression to suppress hypoxia induced ER stress in HK-2 cells. Biomed Res Int 2016:5029797. https://doi.org/10.1155/2016/5029797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park HY, Park C, Hwang HJ et al (2014) 7,8-Dihydroxyflavone attenuates the release of pro-inflammatory mediators and cytokines in lipopolysaccharide-stimulated BV2 microglial cells through the suppression of the NF-κB and MAPK signaling pathways. Int J Mol Med 33(4):1027–1034. https://doi.org/10.3892/ijmm.2014.1652

    Article  CAS  PubMed  Google Scholar 

  33. Le Bail JC, Varnat F, Nicolas JC et al (1998) Estrogenic and antiproliferative activities on MCF-7 human breast cancer cells by flavonoids. Cancer Lett 130(1–2):209–216. https://doi.org/10.1016/s0304-3835(98)00141-4

    Article  PubMed  Google Scholar 

  34. Sim DY, Sohng JK, Jung HJ (2016) Anticancer activity of 7,8-dihydroxyflavone in melanoma cells via downregulation of α-MSH/cAMP/MITF pathway. Oncol Rep 36(1):528–534. https://doi.org/10.3892/or.2016.4825

    Article  CAS  PubMed  Google Scholar 

  35. Mesentier-Louro LA, Shariati MA, Dalal R et al (2020) Systemic hypoxia led to little retinal neuronal loss and dramatic optic nerve glial response. Exp Eye Res 193:107957. https://doi.org/10.1016/j.exer.2020.107957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sivakumar V, Foulds WS, Luu CD et al (2011) Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina. J Pathol 224(2):245–260. https://doi.org/10.1002/path.2858

    Article  CAS  PubMed  Google Scholar 

  37. Lin PW, Lin HC, Friedman M et al (2020) Effects of CPAP for patients with OSA on visual sensitivity and retinal thickness. Sleep Med 67:156–163. https://doi.org/10.1016/j.sleep.2019.10.019

    Article  PubMed  Google Scholar 

  38. Sun MH, Liao YJ, Lin CC et al (2018) Association between obstructive sleep apnea and optic neuropathy: a Taiwanese population-based cohort study. Eye (Lond) 32(8):1353–1358. https://doi.org/10.1038/s41433-018-0088-1

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Hong Zhang and Dr. Hong-Li Liu, who specialize in ophthalmology in Tongji Hospital affiliated of Tongji Medical College of Huazhong University of Science and Technology, for their technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81770086) and the National Key Research and Development Program of China (grant number 2016YFC1304203).

Author information

Authors and Affiliations

Authors

Contributions

Y.-Y.F., M.L., and K.L. conceived and supervised the project. Y.-Y.F., S.Y., Y.H., and Y.-H.Z. conducted the experiments and analyzed the data. Y.-Y.F., M.L., and H.-J.Z. wrote the manuscript. H.-G.L. revised the manuscript and approved the article.

Corresponding author

Correspondence to Hui-guo Liu.

Ethics declarations

Ethics approval

All experimental procedures described in the present study were approved by the Institutional Animal Care and Use Committee of Tongji Medical College at Huazhong University of Science and Technology (TJH-201901002) and were performed in accordance with the ARVO statement for the Use of Animals in Ophthalmic and Vision Research and NIH guidelines for the care and use of animals in research.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Yy., Luo, M., Yue, S. et al. 7,8-Dihydroxyflavone protects retinal ganglion cells against chronic intermittent hypoxia-induced oxidative stress damage via activation of the BDNF/TrkB signaling pathway. Sleep Breath 26, 287–295 (2022). https://doi.org/10.1007/s11325-021-02400-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-021-02400-5

Keywords

Navigation