[go: up one dir, main page]

Skip to main content
Log in

A K-Band Low-Noise and High-Gain Down-Conversion Active Mixer Using 0.18-μm CMOS Technology

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper fabricates a K-Band 24 GHz high-gain, low-power down-conversion mixer using a standard TSMC 0.18-μm CMOS technology. The architecture that is used is based on that of a Gilbert cell mixer. Transformer coupling technology is used at the node between the transconductance stage and the local oscillator switches stage. The conversion gain, the noise figure and the size of the chip area performance are significantly better, so this mixer with specific RF parameters gives excellent performance. The simulation (post-sim) results for the proposed mixer show a 15–19 dB power conversion gain, a − 8.3 dBm input third-order intercept point (IIP3) at 24 GHz, a 10–12.3 dB signal side band (SSB) noise figure and an RF bandwidth of 20–26 GHz. The core power consumption for the mixer is 3.096 mW and the output buffer power consumption is 3.122 mW. The total dc power consumption for this mixer, including the output buffers, is 6.22 mW. The total chip size for the K-Band mixer is 0.95 × 1.14 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Issakov, V. (2010). Microwave circuits for 24 GHz automotive radar in silicon-based technologies. Berlin: Springer.

    Book  Google Scholar 

  2. Jain, V., & Heydari, P. (2012). Automotive radar sensors in silicon technologies. Berlin: Springer.

    Google Scholar 

  3. Zhao, L., & Wang, C. (2015). A novel low voltage low power high linearity self-biasing current-reuse up-conversion mixer. Wireless Personal Communications, 80(1), 277–287.

    Article  Google Scholar 

  4. Kia, H. B., & A’ain, A. K. (2014). A high gain and low flicker noise CMOS mixer with low flicker noise corner frequency using tunable differential active inductor. Wireless Personal Communications, 79(1), 599–610.

    Article  Google Scholar 

  5. Chen, J. D., & Wang, S. H. (2017). A low-power and high-gain ultra-wideband down-conversion active mixer in 0.18-μm SiGe Bi-CMOS technology. Circuits, Systems and Signal Processing, 36(7), 2635–2653.

    Article  Google Scholar 

  6. Chen, J. D., & Wang, S. H. (2017). A low-power, high-gain, and low-noise 802.11 a down-conversion mixer in 0.35-μm SiGe Bi-CMOS technology. Journal of Circuits, Systems and Computers, 26(9), 1750134.

    Article  MathSciNet  Google Scholar 

  7. Wan, Q., Wang, C., & Sun, J. (2013). Design of a low voltage highly linear 2.4 GHz up-conversion mixer in 0.18 μm CMOS technology. Wireless Personal Communications, 70(1), 57–68.

    Article  Google Scholar 

  8. Chen, J. D. (2011). A low-voltage ultra-wideband down-conversion mixer with improved power conversion gain. International Journal of Electronics, 98(8), 1055–1073.

    Article  Google Scholar 

  9. Tang, C. C., Wu, C. H., Feng, W. S., & Liu, S. I. (2001). A 2.4 GHz low voltage CMOS down-conversion double-balanced mixer. IEICE Transactions on Electronics, 84(8), 1084–1091.

    Google Scholar 

  10. Seo, J. B., Kim, J. H., Sun, H., & Yun, T. Y. (2008). A low-power and high-gain mixer for UWB systems. IEEE Microwave and Wireless Components Letters, 18(12), 803–805.

    Article  Google Scholar 

  11. Pandey, S., Sahu, C., & Singh, J. (2017). A highly linear RF mixer using gate-all-around junctionless transistor. International Journal of Electronics Letters, 5(2), 129–136.

    Article  Google Scholar 

  12. Chen, J. D. (2011). A low-voltage high-linearity ultra-wideband down-conversion mixer in 0.18-μm CMOS technology. Microelectronics Journal, 42(1), 113–126.

    Article  Google Scholar 

  13. Darabi, H., & Abidi, A. A. (2000). Noise in RF-CMOS mixers: A simple physical model. IEEE Journal of Solid-State Circuits, 35(1), 15–25.

    Article  Google Scholar 

  14. Park, J., Lee, C. H., Kim, B. S., & Laskar, J. (2006). Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4372–4380.

    Article  Google Scholar 

  15. Chen, J. D., & Zhang, J. (2017). A 0.7 V 6.66–9.36 GHz wide tuning range CMOS LC VCO with small chip size. International Journal of Electronics, 104(10), 1763–1776.

    Article  Google Scholar 

  16. Long, J. R. (2000). Monolithic transformers for silicon RF IC design. IEEE Journal of Solid-State Circuits, 35(9), 1368–1382.

    Article  Google Scholar 

  17. Verma, A., Gao, L., & Lin, J. (2005). A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13-/spl mu/m CMOS technology. IEEE Microwave and Wireless Components Letters, 15(8), 493–495.

    Article  Google Scholar 

  18. Ahn, D., Kim, D. W., & Hong, S. (2009). A K-Band high-gain down-conversion mixer in 0.18 μm CMOS technology. IEEE Microwave and Wireless Components Letters, 19(4), 227–229.

    Article  Google Scholar 

  19. Bae, H. R., Cho, C. S., Lee, J. W., & Kim, J. (2009). A 24 GHz dual-gate mixer using sub-harmonic in 0.18 μm CMOS technology. In Asia Pacific microwave conference, 2009 (APMC 2009) (pp. 1739–1742). IEEE.

  20. Chang, Y. H., Huang, C. Y., & Chiang, Y. C. (2012). A 24 GHz down-conversion mixer with low noise and high gain. In 2012 7th European microwave integrated circuits conference (EuMIC) (pp. 285–288). IEEE.

  21. Beigizadeh, M., & Nabavi, A. (2014). Design of a high gain and highly linear common-gate UWB mixer in K-band. Analog Integrated Circuits and Signal Processing, 78(2), 501–509.

    Article  Google Scholar 

  22. Wang, S., & Chen, P. H. (2016). An active Marchand balun and its application to a 24-GHz CMOS mixer. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(10), 1535–1541.

    Article  Google Scholar 

  23. Chang, Y. T., Wu, H. Y., & Lu, H. C. (2016). A K-band high-gain down-converter mixer using cross couple pair active load. In 2016 11th European microwave integrated circuits conference (EuMIC) (pp. 377–380). IEEE.

  24. Rastegar, H., Saryazdi, S., & Hakimi, A. (2013). A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in 0.13 μm CMOS process. Microelectronics Journal, 44(3), 201–209.

    Article  Google Scholar 

  25. Pandey, S., Kondekar, P. N., Nigam, K., & Sharma, D. (2016). A 0.9 V, 3.1–10.6 GHz CMOS LNA with high gain and wideband input match in 90 nm CMOS process. In 2016 IEEE Asia Pacific conference on circuits and systems (APCCAS) (pp. 730–733). IEEE.

Download references

Acknowledgements

The authors thank National Science council (NSC) for its financial support (NSC 101-2221-E-507-006), National Applied Research Laboratories National Chip Implementation Center (CIC) for its technical support, and National Nano Device Laboratory for its supporting measurement. Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Da Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JD., Wang, Wj. A K-Band Low-Noise and High-Gain Down-Conversion Active Mixer Using 0.18-μm CMOS Technology. Wireless Pers Commun 104, 407–421 (2019). https://doi.org/10.1007/s11277-018-6027-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6027-4

Keywords

Navigation