[go: up one dir, main page]

Skip to main content
Log in

Generalised asymptotic frame-work for double shadowed \(\kappa -\mu \) fading with application to wireless communication and diversity reception

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this work, the asymptotic performance analysis over double shadowed \(\kappa \)-\(\mu \) fading channel is presented. More specifically, the unified asymptotic tight performance bounds for maximum ratio combining , selection combining and equal gain combining diversity receptions is presented. The system performance in terms of the outage probability (OP), symbol error probability (SEP) (coherent/non-coherent), the average probability of detection, and the average area under the receiver operating characteristic curve (AUC) is studied. To gain more insights and to validate the asymptotic slope of the results, the coding gain and diversity gain for OP, SEP, probability of missed detection, and complementary AUC for all the diversity techniques are also presented. It is found that the asymptotic slope of all the performance parameters and diversity techniques depend only on the number of multipath clusters and the diversity order of the system. Further, simulation results are presented to demonstrate the effectiveness of the proposed methodology under various channel conditions in diverse field of applications, such as vehicle-to-vehicle communication, wearable communication, and wireless power transfer related technologies .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon, M. K., & Alouini, M. S. (2004). Digital communication over fading channels (2nd ed.). New York: Wiley-IEEE Press.

    Book  Google Scholar 

  2. Yacoub, M. (2007). The \(\kappa -\mu \) distribution and the \(\eta -\mu \) distribution. IEEE Antennas Propagation Magazine, 49, 68–81. https://doi.org/10.1109/MAP.2007.370983

    Article  Google Scholar 

  3. Khuwaja, A. A., Chen, Y., Zhao, N., Alouini, M., & Dobbins, P. (2018). A Survey of Channel Modeling for UAV Communications. IEEE Communications Surveys & Tutorials, Fourthquarter, 20(4), 2804–2821. https://doi.org/10.1109/COMST.2018.2856587

    Article  Google Scholar 

  4. Chen, S., Zhang, J., Zeng, W., Peppas, K. P., Ai, B. Performance., & Analysis of Wireless Powered UAV Relaying Systems Over \(\kappa -\mu \) Fading Channels. (2018). IEEE Globecom Workshops (GC Wkshps). Abu Dhabi, United Arab Emirates, 2018, 1–6. https://doi.org/10.1109/GLOCOMW.2018.8644370

  5. Ji, B., Li, Y., Cao, D., Li, C., Mumtaz, S., & Wang, D. (2020). Secrecy performance analysis of uav assisted relay transmission for cognitive network with energy harvesting. IEEE Transactions on Vehicular Technology, 69(7), 7404–7415. https://doi.org/10.1109/TVT.2020.2989297

    Article  Google Scholar 

  6. Panic, S., Perera, T. D. P., Jayakody, D. N. K., Stefanovic, C., & Prlincevic, B. UAV-assited Wireless Powered Sensor Network over Rician Shadowed Fading Channels 2019. IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 2019: 1-5, https://doi.org/10.1109/COMCAS44984.2019.8958112.

  7. Kumar, S., Soni, S., & Jain, P. (2018). Performance of MRC receiver over hoyt-lognormal composite fading channel. International Journal of Electronics, 105, 1433–1450. https://doi.org/10.1080/00207217.2018.1460870

    Article  Google Scholar 

  8. Chauhan, P. S., Tiwari, D., & Soni, S. K. (2017). New analytical expressions for the performance metrics of wireless communication system over Weibull/Lognormal composite fading. International Journal of Electronics and Communications, 92, 397–405. https://doi.org/10.1016/j.aeue.2017.10.013

    Article  Google Scholar 

  9. Al-Hmood, H., & Al-Raweshidy, H. S. (2017). Unified modeling of composite \(\kappa -\mu \)/Gamma, \(\eta -\mu \)/Gamma and \(\alpha -\mu \)/Gamma fading channel using a mixture gamma distribution with applications to energy detection. IEEE Antennas and Wireless Propagation Letters, 16, 104–108. https://doi.org/10.1109/LAWP.2016.2558455

    Article  Google Scholar 

  10. Chauhan, P. S., Negi, P., & Soni, S. K. (2017). A unified approach to modelling of probability of detection over \(\alpha -\mu \)/IG, \(\kappa -\mu \)/IG, and \(\eta -\mu \)/IG composite fading channels with application to cooperative system. International Journal of Electronics and Communications, 87, 33–42. https://doi.org/10.1016/j.aeue.2018.01.035

    Article  Google Scholar 

  11. Bhargav, N., Silva, C. R. N. D., et al. (2019). Double shadowing the Rician fading model. IEEE Wireless Communications Letters, 8, 344–347. https://doi.org/10.1109/LWC.2018.2871677

    Article  Google Scholar 

  12. Singh, R., Rawat, M., & Pradhan, P. M. (2020). Effective capacity of wireless networks over double shadowed Rician fading channels. Wireless Networks, 26, 1347–1355. https://doi.org/10.1007/s11276-019-02193-2

    Article  Google Scholar 

  13. Ai, Y., Kong, L., & Cheffena, M. (2019). Secrecy outage analysis of double shadowed Rician channels. Electronics Letters, 55, 765–767. https://doi.org/10.1049/el.2019.0707

    Article  Google Scholar 

  14. Bhargav, N., & Silva, C. R. N. D., et al. The double shadowed \(\kappa -\mu \) fading model.2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2019; Barcelona, Spain: 1-6, https://doi.org/10.1109/WiMOB.2019.8923336

  15. Simmons, N., & Silva, C. R. N. D., et al. On shadowing the \(\kappa -\mu \) fading model.IEEE Access, 2020; 8: 120513-120536, https://doi.org/10.1109/ACCESS.2020.3005527.

  16. Singh, R., & Rawat, M. Outage analysis of double shadowed \(\kappa -\mu \) fading channels.2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT, )2019, Kanpur, 1-4, https://doi.org/10.1109/ICCCNT45670.2019.8944440.

  17. Singh, R., & Rawat, M. On the performance analysis of effective capacity of double shadowed \(\kappa -\mu \) fading channels.IEEE Region 10 Conference (TENCON 2019), 2019, 806-810, https://doi.org/10.1109/TENCON.2019.8929632.

  18. Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transaction on Communications, 51(8), 1989–1398. https://doi.org/10.1109/TCOMM.2003.815053

    Article  Google Scholar 

  19. de Tejerina, G. R., da Silva, C. R. N., & Yacoub, M. D. (2020). Extended \(\eta \)-\(\mu \) fading models. IEEE Transactions on Wireless Communications, 19(12), 8153–8164. https://doi.org/10.1109/TWC.2020.3019656

    Article  Google Scholar 

  20. Parente, F. R. A., & Santos Filho, J. C. S. (2019). Asymptotically exact framework to approximate sums of positive correlated random variables and application to diversity-combining receivers. IEEE Wireless Communications Letters, 8(9), 1012–1015. https://doi.org/10.1109/LWC.2019.2904032

    Article  Google Scholar 

  21. Al-Badarneh, Y. H., Georghiades, C. N., & Alouini, M. (2018). Asymptotic performance analysis of the kth best link selection over wireless fading channels: An extreme value theory approach. IEEE Transaction on Vehicular Technology, 67(7), 6652–6657. https://doi.org/10.1109/TVT.2018.2798501

    Article  Google Scholar 

  22. Zhu, B., Yan, J., Wang, Y., Wu, L., & Cheng, J. (2017). Asymptotically tight performance bounds of diversity receptions over \(\alpha -\mu \) fading channels with arbitrary correlation. IEEE Transaction on Vehicular Technology, 66(9), 7619–7632. https://doi.org/10.1109/TVT.2017.2686700

    Article  Google Scholar 

  23. Zhu, B., Cheng, J., Al-Dhahir, N., & Wu, L. (2016). Asymptotic analysis and tight performance bounds of diversity receptions over beckmann fading channels with arbitrary correlation IEEE transaction on. Communications, 64(5), 2220–2234. https://doi.org/10.1109/TCOMM.2016.2543730

    Article  Google Scholar 

  24. Olutayo, A., Cheng, J, & Holzman, J. F. Asymptotically tight performance bounds for equal-gain combining over a new correlated fading channel.15th Canadian Workshop on Inf Theory (CWIT), 2017; Quebec City, Canada, 1-5, https://doi.org/10.1109/CWIT.2017.7994814.

  25. Olutayo, A., Cheng, J, & Holzman, J. F. Asymptotically tight performance bounds for selection diversity over Beaulieu-Xie fading channels with arbitrary correlation.IEEE International Conference on Communications (ICC), 2017; Paris, France, 1-6, https://doi.org/10.1109/ICC.2017.7997182.

  26. Peppas, K. P., Efthymoglou, G., et al. (2015). Energy detection of unknown signals in Gammashadowed Rician fading environments with diversity reception. IET Communication, 9(2), 196–210. https://doi.org/10.1049/iet-com.2014.0170

    Article  Google Scholar 

  27. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). San Deigo: Academic.

    MATH  Google Scholar 

  28. Badarneh, O. S., & Aloqlah, M. S. (2016). Performance analysis of digital communication systems over \(\alpha -\eta -\mu \) fading channels. IEEE Transactions on Vehicular Technology, 65(10), 7972–81. https://doi.org/10.13140/RG.2.1.4046.7925

    Article  Google Scholar 

  29. Prudnikov, A. P., Brychkov, Y., & Marichev, O. I. (1986). Integrals and series volume 2: special functions (1st ed.). New York: Gordon and Breach Science Publishers.

    MATH  Google Scholar 

  30. Chauhan, P. S., & Soni, S. K. (2019). Average SEP and channel capacity analysis over Generic/IG composite fading channels: A unified approach. Physical Communications, 34, 9–18. https://doi.org/10.1016/j.phycom.2019.02.003

    Article  Google Scholar 

  31. Pant, D., Chauhan, P. S., & Soni, S. K. (2019). Error probability and channel capacity analysis of wireless system over inverse gamma shadowed fading channel with selection diversity. International Journal of Communication Systems. https://doi.org/10.1002/dac.4083

    Article  Google Scholar 

  32. Chauhan, P. S., Kumar, S., & Soni, S. K. (2019). New approximate expressions of average symbol error probability, probability of detection and AUC with MRC over generic and composite fading channels. International Journal of Electronics and Communications, 87, 119–129. https://doi.org/10.1016/j.aeue.2018.11.006

    Article  Google Scholar 

  33. Bozek, P., Karavaev, Y. L., Ardentov, A. A., & Yefremov, K. S. (2020). Neural network control of a wheeled mobile robot based on optimal trajectories. International Journal of Advanced Robotic Systems, 2, 871.

    Google Scholar 

  34. Pirní, R., Hruboš, M., Nemec, D., Mravec, T., & Božek, P. Integration of Inertial Sensor Data into Control of the Mobile Platform. In Proceedings of the 2015 Federated Conference on Software Development and Object Technologies SDOT 2015. Advances in Intelligent Systems and Computing, 2017; 511.

  35. Semjon, J., Hajduk, M., Jánoš, R., & Vagaš, M. (2013). Modular welding fixtures for robotic cells. Applied Mechanics and Materials, 309, 80–87. https://doi.org/10.4028/www.scientific.net/amm.309.80

    Article  Google Scholar 

  36. Prudnikov, A. P., Brychkov, Y., & Marichev, O. I. (1986). Integrals and series volume 3: more special functions (1st ed.). London: Gordon and Breach Science Publishers.

    MATH  Google Scholar 

  37. Bhargav, N., Nogueira da Silva, C. R., Cotton S. L., Sofotasios P. C., & Yacoub, M. D. On Shadowing the \(\kappa \)-\(\mu \) Fading Model, http://arxiv.org/abs/Signal Processing, 2018.

Download references

Acknowledgements

This work is a part of Ministry of Electronics and Information Technology (MeitY), Electronics Systems Development and Application Division, Govt. of India sponsored project entitled “Development of IoT and Drone based Agriculture Monitoring System with Objective of Skill Development of Socially Deprived Community” with Project Ref. No.:26(6)/2019-ESDA .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Soni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, P.S., Kumar, S., Upaddhyay, V.K. et al. Generalised asymptotic frame-work for double shadowed \(\kappa -\mu \) fading with application to wireless communication and diversity reception. Wireless Netw 28, 1923–1934 (2022). https://doi.org/10.1007/s11276-022-02922-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02922-0

Keywords

Navigation