[go: up one dir, main page]

Skip to main content

Advertisement

Log in

EECASC: an energy efficient communication approach in smart cities

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The power consumption and connectivity of mobile nodes to the network are two essential issues in smart cities. In this paper, we have proposed a decentralized approach for mobility management of mobile nodes in smart cities. We propose a customized communication protocol compliant with 6LoWPAN along with the scheme that consumes less power regarding previous solutions. The proposed approach organizes static nodes as a tree for efficient routing, automatic addressing, and handling movement of mobile nodes. The proposed approach has a hybrid data transmission capability by proactively choosing multi-hop or single-hop routing to reduce power consumption of mobile nodes. It is evaluated based on different factors. The results show the superiority of the approach compared with the previous works. The promising analytical results manifest the higher performance (about 10% compared to the best scheme) of the proposed approach specifically in reducing the power consumption of mobile nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Article  Google Scholar 

  2. Dohr, A., Modre-Opsrian, R., Drobics, M., Hayn, D. & Schreier, G. (2010). The internet of things for ambient assisted living. In Information technology: New generations (ITNG), 2010 seventh international conference on (pp. 804–809).

  3. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.

    Article  MATH  Google Scholar 

  4. De Pellegrini, F., Chlamtac, I., Miorandi, D., & Sicari, S. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516.

    Article  Google Scholar 

  5. Khan, M., Babar, M., Ahmed, S. H., Shah, S. C., & Han, K. (2017). Smart city designing and planning based on big data analytics. Sustainable Cities and Society, 35, 271–279.

    Article  Google Scholar 

  6. Jabir, A. J., Subramaniam, S. K., Ahmad, Z. Z., & Hamid, N. A. W. A. (2012). A cluster-based proxy mobile ipv6 for ip-wsns. EURASIP Journal on Wireless Communications and Networking, 1, 2012.

    Google Scholar 

  7. Shahamabadi, M. S., Ali, B. B. M., Varahram, P., & Jara, A. J. (2013). A network mobility solution based on 6lowpan hospital wireless sensor network (nemo-hwsn). In Proceedings of the 2013 seventh international conference on innovative mobile and internet services in ubiquitous computing, IMIS ’13 (pp. 433–438). Washington, DC, USA, 2013. IEEE Computer Society.

  8. Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor networks towards the internet of things: A survey. In Software, telecommunications and computer networks (SoftCOM), 2011 19th international conference on (pp. 1–6).

  9. Hong, S., Kim, D., Ha, M., Bae, S., Park, S. J., Jung, W., et al. (2010). SNAIL: An ip-based wireless sensor network approach to the internet of things. IEEE Wireless Communications, 17(6), 34–42.

    Article  Google Scholar 

  10. Zhu, Q., Wang, R., Chen, Q., Liu, Y., & Qin, W. (2010). Iot gateway: Bridgingwireless sensor networks into internet of things. In Embedded and ubiquitous computing (EUC), 2010 IEEE/IFIP 8th international conference on (pp. 347–352).

  11. Khalil, N., Abid, M. R., Benhaddou, D., & Gerndt, M. (2014). Wireless sensors networks for internet of things. In Intelligent sensors, sensor networks and information processing (ISSNIP), 2014 IEEE ninth international conference on (pp. 1–6).

  12. Bui, N., & Zorzi, M. (2011). Health care applications: A solution based on the internet of things. In Proceedings of the 4th international symposium on applied sciences in biomedical and communication technologies (pp. 131:1–131:5). New York, NY: ACM.

  13. Bouaziz, M., & Rachedi, A. (2016). A survey on mobility management protocols in wireless sensor networks based on 6lowpan technology. Computer Communications, 74, 3–15.

    Article  Google Scholar 

  14. Montavont, J., Roth, D., & No, T. (2014). Mobile IPv6 in internet of things: Analysis, experimentations and optimizations. Ad Hoc Networks, 14, 15–25.

    Article  Google Scholar 

  15. Silva, R., Silva, J. S., & Boavida, F. (2014). Mobility in wireless sensor networks, survey and proposal. Computer Communications, 52(1), 1–20.

    Article  Google Scholar 

  16. Caldeira, J. M. L. P., Rodrigues, J. J. P. C., & Lorenz, P. (2013). Intra-mobility support solutions for healthcare wireless sensor networks handover issues. IEEE Sensors Journal, 13(11), 4339–4348.

    Article  Google Scholar 

  17. McLaren, D., & Agyeman, J. (2015). Sharing cities: A case for truly smart and sustainable cities. Cambridge: MIT Press.

    Google Scholar 

  18. Chowdhury, A. H., Ikram, M., Cha, H.-S., Redwan, H., Shams, S. M., Kim, K.-H., & Yoo, S.-W. (2009). Route-over vs mesh-under routing in 6lowpan. In Proceedings of the 2009 international conference on wireless communications and mobile computing: Connecting the world wirelessly (pp. 1208–1212). ACM.

  19. Jan, R.-H., Hwang, F.-J., & Chen, Sheng-Tzong. (1993). Topological optimization of a communication network subject to a reliability constraint. IEEE Transactions on Reliability, 42(1), 63–70.

    Article  MATH  Google Scholar 

  20. Zamanifar, A., Nazemi, E., & Vahidi-Asl, M. (2017). A mobility solution for hazardous areas based on 6lowpan. Mobile Networks and Applications, pp. 1–16.

  21. Wang, X., Dou, Z., Wang, D., & Sun, Q. (2018). Mobility management for 6lowpan wsn. Computer Networks, 131, 110–128.

    Article  Google Scholar 

  22. Shang, X., Zhang, R., & Chu, F. (2013). An inter-pan mobility support scheme for ip-based wireless sensor networks and its applications. Information Technology and Management, 14(3), 183–192.

    Article  Google Scholar 

  23. Xiaonan, W., & Qian, H. (2013). Research on all-ip communication between wireless sensor networks and IPv6 networks. Computer Standards and Interfaces, 35(4), 403–414.

    Article  Google Scholar 

  24. Wang, X., Zhong, S., & Zhou, R. (2012). A mobility support scheme for 6lowpan. Computer Communications, 35(3), 392–404.

    Article  Google Scholar 

  25. Wang, X., Le, D., Cheng, H., & Xie, C. (2014). All-ip wireless sensor networks for real-time patient monitoring. Journal of Biomedical Informatics, 52(406–417), 2014. (Special Section: Methods in Clinical Research Informatics.).

    Google Scholar 

  26. Shelby, Z., & Bormann, C. (2010). 6LoWPAN: The wireless embedded internet. Hoboken: Wiley Publishing.

    Google Scholar 

  27. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J. P., & Alexander, R. (2012). Rpl: Ipv6 routing protocol for low-power and lossy networks. Technical report.

  28. Bag, G., Raza, M. T., Kim, K.-H., & Yoo, S.-W. (2009). Lowmob: Intra-pan mobility support schemes for 6lowpan. Sensors (Basel, Switzerland), 9(7), 5844–5877.

    Article  Google Scholar 

  29. Ha, M., Kim, S. H., & Kim, D. (2017). Intra-mario: A fast mobility management protocol for 6lowpan. IEEE Transactions on Mobile Computing, 16(1), 172–184.

    Article  MathSciNet  Google Scholar 

  30. Xiaonan, W., & Hongbin, C. (2016). Research on seamless mobility handover for 6lowpan wireless sensor networks. Telecommunication Systems, 61(1), 141–157.

    Article  Google Scholar 

  31. Zamanifar, A., Nazemi, E., & Vahidi-Asl, M. (2016). Dshmp-iot: A distributed self healing movement prediction scheme for internet of things applications. Applied Intelligence, 46, 569–589.

    Article  Google Scholar 

  32. Mun, Y., & Lee, H. K. (2005). Mobility support for ipv6. In Understanding IPv6, (pp. 173–220). Springer US.

  33. Kim, J., Haw, R., Cho, E. J., Hong, C. S., & Lee, S. (2012). A 6lowpan sensor node mobility scheme based on proxy mobile ipv6. IEEE Transactions on Mobile Computing, 11(12), 2060–2072.

    Article  Google Scholar 

  34. Ko, J. G., & Chang, M. (2015). Momoro: Providing mobility support for low-power wireless applications. IEEE Systems Journal, 9(2), 585–594.

    Article  Google Scholar 

  35. Fotouhi, H., Moreira, D., & Alves, M. (2015). mrpl: Boosting mobility in the internet of things. Ad Hoc Networks, 26, 17–35.

    Article  Google Scholar 

  36. Shelby, Z., & Bormann, C. (2011). 6LoWPAN: The wireless embedded Internet (Vol. 43). New York: Wiley.

    Google Scholar 

  37. Chiang, K.-H., & Shenoy, N. (2004). A 2-d random-walk mobility model for location-management studies in wireless networks. IEEE Transactions on Vehicular Technology, 53(2), 413–424.

    Article  Google Scholar 

  38. Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., Sauter, R., & Marrón, P. J. (2009). Cooja/mspsim: Interoperability testing for wireless sensor networks. In Proceedings of the 2Nd international conference on simulation tools and techniques, Simutools ’09 (pp. 27:1–27:7). ICST, Brussels, Belgium, Belgium, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

  39. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-level sensor network simulation with cooja. In Local computer networks, proceedings 2006 31st IEEE conference on (pp. 641–648)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Zamanifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamanifar, A., Nazemi, E. EECASC: an energy efficient communication approach in smart cities. Wireless Netw 26, 925–940 (2020). https://doi.org/10.1007/s11276-018-1838-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1838-5

Keywords

Navigation