[go: up one dir, main page]

Skip to main content
Log in

On the integration of SIC and MIMO DoF for interference cancellation in wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Recent advances in MIMO degree-of-freedom (DoF) models allowed MIMO research to penetrate the networking community. Independent from MIMO, successive interference cancellation (SIC) is a powerful physical layer technique used in multi-user detection. Based on the understanding of the strengths and weaknesses of MIMO DoF and SIC, we propose to have DoF-based interference cancellation (IC) and SIC help each other so that (i) precious DoF resources can be conserved through the use of SIC and (ii) the stringent SINR threshold criteria can be met through the use of DoF-based IC. In this paper, we develop the necessary mathematical models to realize the two ideas in a multi-hop wireless network. Together with scheduling and routing constraints, we develop a cross-layer optimization framework with joint DoF IC and SIC. By applying the framework on a throughput maximization problem, we find that SIC and DoF IC can indeed work in harmony and achieve the two ideas that we propose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For the purpose of this paper, we set \(C_{ji}\) to its average value over a large number of realizations and \(D_{jki}\) to its worst case bound.

References

  1. R. A. Bhatia, & Li, L. (2007). Throughput optimization of wireless mesh networks with MIMO links. In Proceedings of the IEEE INFOCOM (pp. 2326–2330). Anchorage, AK.

  2. Biglieri, E., Calderbank, R., Constantinides, A., Goldsmith, A., Paulraj, A., & Poor, H. V. (2007). MIMO wireless communications. New York: Cambridge University Press.

    Book  Google Scholar 

  3. Blough, D. M., Resta, G., Santi, P., Srinivasan, R., & Cortes-Pena L. M. (2011). Optimal one-shot scheduling for MIMO networks. In Proceeding of the IEEE SECON (pp. 404–412). Salt Lake City, UT.

  4. Blomer, J., & Jindal, N. (2009). Transmission capacity of wireless ad hoc networks: Successive interference cancellation vs. joint detection. In Proceedings of the IEEE ICC, Dresden, Germany.

  5. Choi, W. -J., Negi, R., & Cioffi, J. M. (2000). Combined ML and DFE decoding for the V-BLAST system. In Proceedings of the ICC (Vol. 3, pp. 1243–1248).

  6. Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. Bell Laboratories Technical Journal, 1(2), 41–59.

    Article  Google Scholar 

  7. Foschini, G. J., Golden, G. D., Valenzuela, R. A., & Wolniansky, P. W. (1999). Simplified processing for high spectral efficiency wireless communication employing multi-element arrays. IEEE Journal on Selected Areas in Communication, 17(11), 1841–1852.

    Article  Google Scholar 

  8. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York: W. H. Freeman and Company.

    MATH  Google Scholar 

  9. Gelal, E., Jianxia, N., Pelechrinis, K., Tae-Suk, K., Broustis, I., Krishnamurthy, S. V., et al. (2013). Topology control for effective interference cancellation in multiuser MIMO networks. IEEE/ACM Transactions on Networking, 21(2), 455–468.

    Article  Google Scholar 

  10. Goussevskaia, O., & Wattenhofer, R. (2013). Scheduling with interference decoding: Complexity and algorithms. Ad Hoc Networks, 11(6), 1732–1745.

    Article  Google Scholar 

  11. Halperin, D., Anderson, T., & Wetherall, D. (2008.). Taking the sting out of carrier sense: Interference cancellation for wireless LANs. In Proceedings of the ACM MobiCom (pp. 339–350). San Francisco, CA.

  12. Hamdaoui, B., & Shin, K. G. (2007.). Characterization and analysis of multi-hop wireless MIMO network throughput. In Proceedings of the ACM MobiHoc (pp. 120–129). Montreal, Quebec, Canada.

  13. Hou, Y. T., Shi, Y., & Sheralli, H. D. (2014). Applied optimization methods for wireless networks. Cambridge: Cambridge University Press. ISBN-13: 978-1107018808.

    Book  Google Scholar 

  14. Jalaeian, B., Shi, Y., Yuan, X., Hou, Y. T., Lou, W. & Midkiff S. F. (2015). Harmonizing SIC and MIMO DoF interference cancellation for efficient network-wide resource allocation. In Proceedings of the IEEE International Conference on Mobile Ad hoc and Sensor Systems (IEEE MASS 2015) (pp. 316–323). Dallas, Texas.

  15. Jiang, C., Shi, Y., Hou, Y. T., Lou, W., Kompella, S., & Midkiff S. F. (2012). Squeezing the most out of interference: An optimization framework for joint interference exploitation and avoidance. In Proceedings of the IEEE INFOCOM (pp. 424–432). Orlando, Florida.

  16. Liu, P., & Kim, I.-M. (2011). Exact and closed-form error performance analysis for hard MMSE-SIC detection in MIMO systems. IEEE Transactions on Communications, 59(9), 2463–2477.

    Article  Google Scholar 

  17. Lv, S., Wang, X., & Zhou, X. (2010). Scheduling under SINR model in adhoc networks with successive interference cancellation. In Proceedings of the IEEE GLOBECOM. Miami, FL.

  18. Lv, S., Zhuang, W., Wang, X., Liu, C. & Zhou X.(2011). Maximizing capacity in the SINR model in wireless networks with successive interference cancellation. In Proceedings of the IEEE ICC (pp. 1–6).

  19. Lv, S., Zhuang, W., Wang, X., & Zhou, X. (2011). Scheduling in wireless ad hoc networks with successive interference cancellation. In Proceeding of the IEEE INFOCOM (pp. 1282–1290). Shanghai, China.

  20. Lv, S., Zhuang, W., Wang, X., & Zhou, X. (2011). Link scheduling in wireless networks with successive interference cancellation. Elsevier Computer Networks, 55(13), 2929–2941.

    Article  Google Scholar 

  21. Lv, S., Zhuang, W., Xu, M., Wang, X., Liu, C., & Zhou, X. (2013). Understanding the scheduling performance in wireless networks with successive interference cancellation. IEEE Transactions on Mobile Computing, 12(8), 1625–1639.

    Article  Google Scholar 

  22. Nguyen, H. X., Jinho, C., & Le-Ngoc, T. (2009). High-rate groupwise STBC using low-complexity SIC based receiver. IEEE Transactions on Wireless Communications, 8(9), 4677–4687.

    Article  Google Scholar 

  23. Park, J. -S., Nandan, A., Gerla, M., & Lee, H. (2005). SPACE-MAC: Enabling spatial reuse using MIMO channel-aware MAC. In Proceedings of the IEEE ICC (pp. 3642–3646). Seoul, Korea.

  24. Schrijver, A. (1986). Theory of linear and integer programming. New York, NY: Cambridge University Press.

    MATH  Google Scholar 

  25. Sherali, H. D., & Adams, W. P. (1999). A reformulation-linearization technique for solving discrete and continuous nonconvex problems Chapter 8, Kluwer Academic Publishers, Dordrecht.

  26. Shi, Y., Liu, J., Jiang, C., Gao, C., & Hou, Y. T. (2014). A DoF-based link layer model for multi-hop MIMO networks. IEEE Transactions on Mobile Computing, 13(99), 1395–1408.

    Article  Google Scholar 

  27. Sfar, S., Murch, R. D., & Letaief, K. B. (2003). Layered space-time multiuser detection over wireless uplink systems. IEEE Transactions on Wireless Communications, 2(4), 653–668.

    Article  Google Scholar 

  28. Sundaresan, K., Sivakumar, R., Ingram, M., & Chang, T.-Y. (2004). Medium access control in ad hoc networks with MIMO links: Optimization considerations and algorithms. IEEE Transaction on Mobile Computing, 3(4), 350–365.

    Article  Google Scholar 

  29. Tolli, A., Codreanu, M., & Juntti, M. (2008). Cooperative MIMO-OFDM cellular system with soft handover between distributed base station antennas. IEEE Transactions on Wireless Communications, 7(4), 1428–1440.

    Article  Google Scholar 

  30. Tse, D. N. C., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  31. Varanasi, M. K. & Guess, T. (1997). Optimum decision feedback multiuser equalization and successive decoding achieves the total capacity of the Gaussian multiple-access channel. In Proceedings of the Asilomar Conference on Signals, Systems and Computers.

  32. Verdu, S. (1998). Multiuser detection. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  33. Weber, S., Andrews, J. G., Yang, X., & de Veciana, G. (2007). Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Transactions on Information Theory, 53(8), 2799–2814.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wolniansky, P. W., Foschini, G. J., Golden, G. D. & Valenzuela, R. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In International Symposium on Signals, Systems, and Electronics (pp. 95–300).

  35. Wong, K., Murch, R. D., & Letaief, K. B. (2002). Performance enhancement of multiuser MIMO wireless communication systems. IEEE Transactions on Communications, 50(12), 1960–1970.

    Article  Google Scholar 

  36. Yuan, D., Angelakis, V., Chen, L., Karipidis, E., & Larsson, E. G. (2013). On optimal link activation with interference cancellation in wireless networking. IEEE Transactions on Vehicular Technology, 62(2), 939–945.

    Article  Google Scholar 

  37. Zanella, A., Chiani, M., & Win, M. Z. (2005). MMSE reception and successive interference cancellation for MIMO systems with high spectral efficiency. IEEE Transactions on Wireless Communications, 4(3), 1244–1253.

    Article  Google Scholar 

  38. Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.

    Article  MATH  Google Scholar 

  39. Zhu, X., & Murch, R. D. (2002). Performance analysis of maximum likelihood detection in a MIMO antenna system. IEEE Transactions on Communications, 50(2), 187–191.

    Article  Google Scholar 

  40. IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

Download references

Acknowledgements

This work was supported in part by NSF under Grants 1642873, 1617634, 1443889, 1343222, 1102013, 1064953 and ONR Grant N00014-15-1-2926. Part of W. Lou’s work was completed while she was serving as a Program Director at the NSF. Any opinion, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not reflect the views of the NSF. The authors thank Virginia Tech Advanced Research Computing for giving them access to the BlueRidge computer cluster. Authors express their gratitude to the U.S. Army Research Laboratory for supporting this work. The work of B.A. Jalaian was supported in part by an appointment to the Research Participation Program at the U.S. Army Research Laboratory administered by the the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and USARL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Jalaian.

Appendix: Reformulation

Appendix: Reformulation

Reformulation of (20) and (21). First, we introduce binary variables \(\kappa _{ji}[t]\) and \(\beta _{ji}[t]\) to replace \(\theta _{ji}[t] \cdot \gamma _{ij}[t]\) and \(\theta _{ji}[t] \cdot \gamma _{ji}[t]\). That is, \(\kappa _{ji}[t] = \theta _{ji}[t] \cdot \gamma _{ij}[t]\) and \(\beta _{ji}[t] = \theta _{ji}[t] \cdot \gamma _{ji}[t]\). This change of variables will introduce the following new constraints for \(\kappa _{ji}[t]\) and \(\beta _{ji}[t]\):

$$\begin{aligned} \kappa _{ji}[t]\ge & {} \theta _{ji}[t] + \gamma _{ij}[t]-1, (1 \le i \le N, j \in {{\mathcal {I}}}_i, 1\le t \le T), \end{aligned}$$
(30)
$$\begin{aligned} \theta _{ji}[t]\ge & {} \kappa _{ji}[t], (1 \le i \le N, j \in {{\mathcal {I}}}_i, 1\le t \le T), \end{aligned}$$
(31)
$$\begin{aligned} \gamma _{ij}[t]\ge & {} \kappa _{ji}[t], (1 \le i \le N, j \in {{\mathcal {I}}}_i, 1\le t \le T), \end{aligned}$$
(32)
$$\begin{aligned} \beta _{ji}[t]\ge & {} \theta _{ji}[t] + \gamma _{ji}[t]-1, (1 \le i \le N, j \in {{\mathcal {I}}}_i, 1\le t \le T), \end{aligned}$$
(33)
$$\begin{aligned} \theta _{ji}[t]\ge & {} \beta _{ji}[t], (1 \le i \le N, j \in {{\mathcal {I}}}_i, 1\le t \le T), \end{aligned}$$
(34)
$$\begin{aligned} \gamma _{ji}[t]\ge & {} \beta _{ji}[t], (1 \le i \le N, j \in {{\mathcal {I}}}_i, 1\le t \le T). \end{aligned}$$
(35)

Now we can rewrite constraints (20) and (21) for \((1\le i\le N, 1\le t \le T)\) as

$$\begin{aligned} \sum _{l\in {{\mathcal {L}}}_i^{\mathrm {out}}}z_{(l)}[t]+\sum _{j \in {{\mathcal {I}}}_i} \kappa _{ji}[t] \sum _{k\in {{\mathcal {L}}}_j^{\mathrm {in}}}^{{\mathrm {Tx}}(k) \ne i}z_{(k)}[t]\le & {} M \cdot x_i[t]+(1-x_i[t])B_i\;. \end{aligned}$$
(36)
$$\begin{aligned} \sum _{k\in {{\mathcal {L}}}_i^{\mathrm {in}}}z_{(k)}[t]+\sum _{j \in {{\mathcal {I}}}_i} \beta _{ji}[t] \sum _{l\in {{\mathcal {L}}}_j^{\mathrm {out}}}^{{\mathrm {Rx}}(l) \ne i}z_{(l)}[t]\le & {} M \cdot y_i[t]+(1-y_i[t])B_i\;. \end{aligned}$$
(37)

Note that we still have nonlinear terms in (36) and (37), i.e., \(\kappa _{ji}[t]\sum _{k\in {{\mathcal {L}}}_j^{\mathrm {in}}}^{{\mathrm {Tx}}(k) \ne i}z_{(k)}[t]\) and \(\beta _{ji}[t]\sum _{l\in {{\mathcal {L}}}_j^{\mathrm {out}}}^{{\mathrm {Rx}}(l) \ne i}z_{(l)}[t]\). To reformulate these nonlinear terms, we again introduce new variables and adding new constraints. Specifically, we define new integer variable \(\psi _{ji}[t]=\kappa _{ji}[t] \cdot \sum _{k\in {{\mathcal {L}}}_j^{\mathrm {in}}}^{{\mathrm {Tx}}(k) \ne i}z_{(l)}[t]\). Then (36) can be rewritten as

$$\begin{aligned} \sum _{i\in {{\mathcal {L}}}_i^{\mathrm {out}}}z_{(l)}[t]+\sum _{j \in {{\mathcal {I}}}_i} \psi _{ji}[t] \le M \cdot x_i[t]+(1-x_i[t])B_i \ \ \ (1\le i\le N, 1\le t \le T)\;, \end{aligned}$$
(38)

along with new constraints for \(\psi _{ji}[t]\) for \((1 \le i \le N, j \in {{\mathcal {I}}}_i, 1\le t \le T)\).

$$\begin{aligned} \psi _{ji}[t]\le & {} \sum _{k\in {{\mathcal {L}}}_j^{\mathrm {in}}}^{{\mathrm {Tx}}(k) \ne i}z_{(k)}[t]\;, \end{aligned}$$
(39)
$$\begin{aligned} \psi _{ji}[t]\le & {} M \cdot \kappa _{ji}[t]\;, \end{aligned}$$
(40)
$$\begin{aligned} \psi _{ji}[t]\ge & {} M \cdot \kappa _{ji}[t] + \sum _{k\in {{\mathcal {L}}}_j^{\mathrm {in}}}^{{\mathrm {Tx}}(k) \ne i}z_{(k)}[t]-M\;. \end{aligned}$$
(41)

Similarly, for (37), we define new variable \(\epsilon _{ji}[t]= \beta _{ji}[t]\sum _{l\in {{\mathcal {L}}}_j^{\mathrm {out}}}^{{\mathrm {Rx}}(l) \ne i}z_{(l)}[t]\). Then (37) can be rewritten as:

$$\begin{aligned} \sum _{i\in {{\mathcal {L}}}_i^{\mathrm {in}}}z_{(l)}[t]+\sum _{j \in {{\mathcal {I}}}_i} \epsilon _{ji}[t] \le M \cdot y_i[t]+(1-y_i[t])B_i \ \ \ (1\le i\le N, 1\le t \le T)\;, \end{aligned}$$
(42)

along with new constraints for \(\epsilon _{ji}[t]\) for \((1 \le i \le N, j \in {{\mathcal {I}}}_i, 1\le t \le T)\;,\)

$$\begin{aligned} \epsilon _{ji}[t]\le & {} \sum _{l\in {\mathcal {L}}_j^{\mathrm {out}}}^{{\mathrm {Rx}}(l) \ne i}z_{(l)}[t]\;, \end{aligned}$$
(43)
$$\begin{aligned} \epsilon _{ji}[t]\le & {} M \cdot \beta _{ji}[t]\;, \end{aligned}$$
(44)
$$\begin{aligned} \epsilon _{ji}[t]\ge & {} M \cdot \beta _{ji}[t] + \sum _{l\in {\mathcal {L}}_j^{\mathrm {out}}}^{{\mathrm {Rx}}(l) \ne i}z_{(l)}[t]-M\;. \end{aligned}$$
(45)

Reformulation of (24) and (25). The two sets of constraints in (24) and (25) are stated in the form of sufficient conditions rather than mathematical programming. To reformulate both, we first move \(\eta _{ji}[t]=1\) out of the range in (24) by treating it as part of the sufficient condition. That is, if (\(\eta _{ji}[t]=1\) and \(\lambda _{ni}[t]=1\)) then \(\text{ r-SINR }_{ji}[t]\ge \beta\) for \((1 \le i \le N, j \in {\mathcal {I}}_i, p_j L_{ji}^2 \cdot C_{ji}> p_n L_{ni}^2 , 1\le t\le T)\). To combine \(\eta _{ji}[t]=1\) and \(\lambda _{ni}[t]=1\) into one condition, we introduce a binary variable \(\delta _{(ji),(ni)}[t]\), where \(\delta _{(ji),(ni)}[t]=1\) if and only if \((\eta _{ji}[t]=1\) and \(\lambda _{ni}[t]=1)\) for \(( 1 \le i \le N,\, (n,j) \in \mathcal {I}_i, p_j L_{ji}^2 \cdot C_{ji}>p_n L_{ni}^2 , 1\le t\le T)\). This logical condition can be expressed in mathematical form as following:

$$\begin{aligned} \delta _{(ji),(ni)}[t]\ge & {} \eta _{ji}[t] + \lambda _{ni}[t]-1\;, \end{aligned}$$
(46)
$$\begin{aligned} \eta _{ji}[t]\ge & {} \delta _{(ji),(ni)}[t] \;, \end{aligned}$$
(47)
$$\begin{aligned} \lambda _{ni}[t]\ge & {} \delta _{(ji),(ni)}[t]\;. \end{aligned}$$
(48)

Now, we can re-write MIMO SIC sequential SINR constraints derived in (24) and (25) based on the above newly defined variables and substituting \(\text{ r-SINR }\) definitions for intended and unintended transmissions in (23) and (22), respectively. For \(( 1 \le i \le N,\, (n,j) \in \mathcal {I}_i, p_j L_{ji}^2 \cdot C_{ji}>p_n L_{ni}^2 , 1\le t\le T)\),

$$\begin{aligned} \text{ if } \delta _{(ji),(ni)}[t]=1 \text{ then } \frac{p_j \cdot L_{ji}^2 \cdot C_{ji}}{ \sum _{k \in \mathcal {I}_i, k \ne j, \eta _{ki}[t]=1 \scriptstyle \mathrm {\ or\ } \lambda _{ki}[t]=1}^{p_k L_{ki}^2 \cdot C_{ki} \le p_j L_{ji}^2 \cdot C_{ji}} p_k \cdot L_{ki}^2 \cdot D_{jki}+N_0} \ge \beta \;, \end{aligned}$$
(49)

and for \((1 \le i \le N, n \in \mathcal {I}_i, 1\le t\le T)\),

$$\begin{aligned} \text{ if } \lambda _{ni}[t]=1 \text{ then } \frac{p_n L_{ni}^2 }{\sum _{k \in \mathcal {I}_i, k \ne n, \eta _{ki}=1}^{p_k L_{ki}^2 \cdot C_{ki} \le p_n L_{ni}^2 } p_k \cdot L_{ki}^2 \cdot D_{nki}+N_0} \ge \beta \;. \end{aligned}$$
(50)

The logical constraints (49) and (50) can now be reformulated into mathematical form. For \(( 1 \le i \le N,\, (n,j) \in \mathcal {I}_i, p_j L_{ji}^2 \cdot C_{ji}>p_n L_{ni}^2 , 1\le t\le T)\),

$$\begin{aligned} \frac{ \delta _{(ji),(ni)}[t] \cdot p_j \cdot L_{ji}^2 \cdot C_{ji}+(1- \delta _{(ji),(ni)}[t]) \cdot G^\prime }{\sum _{k \in {\mathcal {I}}_i, k \ne j}^{p_k L_{ki}^2 \cdot C_{ki} \le p_j L_{ji}^2 \cdot C_{ji}} p_k \cdot L_{ki}^2 \cdot \eta _{ki}[t] \cdot D_{jki}+ \lambda _{ni}[t] \cdot p_n \cdot L_{ni}^2 \cdot D_{jni}+N_0} \ge \beta \;, \end{aligned}$$
(51)

and for \(( 1 \le i \le N, n \in \mathcal {I}_i, 1\le t\le T)\),

$$\begin{aligned} \frac{\lambda _{ni}[t] \cdot p_j \cdot L_{ji}^2 + (1-\lambda _{ni}[t]) \cdot G}{\sum _{k \in {\mathcal {I}}_i k \ne n}^{p_k L_{ki}^2 \cdot C_{ki} \le p_n L_{ni}^2} p_k \cdot L_{ki}^2 \cdot \eta _{ki}[t] \cdot D_{nki}+N_0} \ge \beta \;. \end{aligned}$$
(52)

where \(G^\prime\) is an upper bound of \(\beta \cdot (\sum\nolimits _{k \in {\mathcal {I}}_i, k \ne j}^{p_k L_{ki}^2 \cdot C_{ki} \le p_j L_{ji}^2 \cdot C_{ji}} \eta _{ki}[t] \cdot p_k \cdot L_{ki}^2 \cdot D_{jki}+ \lambda _{ni}[t] \cdot p_n \cdot L_{ni}^2 \cdot D_{jni} +N_0)\) to ensure that the constraint holds whenever \(\delta _{(ji),(ni)}[t]=0\). Define \(G^\prime =\beta \cdot (\sum _{k \in {\mathcal {I}}_i, k \ne j} p_k \cdot L_{ki}^2 \cdot D_{jki} +N_0)\). Then \(G^\prime \ge \beta \cdot (\sum _{k \in {\mathcal {I}}_i, k \ne j}^{p_k L_{ki}^2 \cdot C_{ki} \le p_j L_{ji}^2 \cdot C_{ji}} \eta _{ki}[t] \cdot p_k \cdot L_{ki}^2 \cdot D_{jki}+ \lambda _{ni}[t] \cdot p_n \cdot L_{ni}^2 \cdot D_{jni} +N_0).\) Similarly, G is an upper bound of \(\beta \cdot (\sum\sum\nolimits _{k \in {\mathcal {I}}_i, k \ne n}^{p_k L_{ki}^2 \cdot C_{ki} \le p_n L_{ni}^2}\eta _{ki}[t] \cdot p_k \cdot L_{ki}^2 \cdot D_{nki} +N_0)\) to ensure that the constraint holds whenever \(\lambda _{ni}[t]=0\). Define \(G=\beta \cdot (\sum\nolimits _{k \in {\mathcal {I}}_i, k \ne n} p_k \cdot L_{ki}^2 \cdot D_{nki} +N_0)\). Then \(G \ge \beta \cdot (\sum\nolimits _{k \in {\mathcal {I}}_i, k \ne n}^{p_k L_{ki}^2 \cdot C_{ki} \le p_n L_{ni}^2}\eta _{ki}[t] \cdot p_k \cdot L_{ki}^2 \cdot D_{nki} +N_0).\)

In summary we replace (20), (21), (24), and (25) with (30)–(35), (38)–(41), (42)–(45), (51), and (52) in the original formulation TMP. The resulting optimization problem which we denote R-TMP, can be written as

$$\begin{aligned} \begin{array}{lll} \mathbf {R-TMP} &{}\max &{} r_{\min } \\ &{}\hbox { s.t}. &{}r_{\min } \le r(f) \qquad \qquad (f \in \mathcal {F});\\ &{} &{}\hbox {Half duplex constraint}: (1); \\ &{} &{}\hbox {Node activity constraints}: (2), (3);\\ &{} &{}\hbox {Node ordering constraints}: (4), (5);\\ &{} &{}\hbox {DoF consumption with SIC}: (14)-18), (30)-(35), (38)-(45);\\ &{} &{}\hbox {Sequential SIC with IC}: (19), (46)-(48), (51),(52);\\ &{} &{}\hbox {Flow balance constraints}: (26), (27); \\ &{} &{}\hbox {Link capacity constraints}: (29); \\ &{} &{}\hbox {Variables}: x_i[t],y_i[t],z_{(l)}[t],\pi _i[t],\theta _{ji}[t],\eta _{ji}[t],\gamma _{ji}[t],\lambda _{ji}[t],\\ &{} &{} \psi _{ji}[t],\kappa _{ji}[t],\epsilon _{ji}[t],\beta _{ji}[t],\delta _{(ji),(ni)}[t],r_l(f),r(f);\\ &{} &{}\hbox {Constants}: M,N,T,B_i,p_j,L_{ji}^2,\beta ,N_0,G,G^\prime ,C_{ji}, D_{jki}. \end{array} \end{aligned}$$

R-TMP is a mixed-integer linear problem (MILP). Therefore, we can apply a solver such as CPLEX [40] to obtain a solution efficiently.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalaian, B.A., Yuan, X., Shi, Y. et al. On the integration of SIC and MIMO DoF for interference cancellation in wireless networks. Wireless Netw 24, 2357–2374 (2018). https://doi.org/10.1007/s11276-017-1472-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1472-7

Keywords

Navigation