[go: up one dir, main page]

Skip to main content
Log in

Joint pre-processing co-channel interference cancellation for single user MIMO

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In general, multiplexing and diversity gains of single user MIMO systems are restricted by min(M,N) where M, N denote the number of antenna elements at a transmitter and receiver, respectively. In order to increase the multiplexing/diversity gains and improve the performance of single user MIMO systems, a joint pre-processing co-channel interference cancellation (JPCIC) method is proposed. The JPCIC is analyzed in both the perfect and the imperfect channel state information. The dependence of channel capacity on the number of antenna elements in every subset, the number of subsets, transmit powers and channel estimation errors is discussed. As theoretical calculation result, the channel capacity increases when the multiplexing/diversity gains and/or the transmit power increase in a certain channel model whether the channel estimation error is absent or present. Compared to the conventional zero-forcing method, the channel capacity of JPCIC is considerably higher because of higher multiplexing/diversity gains, however, it is less robust and decreased more rapidly due to incomplete cancellation of interference terms when the channel estimation error increases. There is a trade-off between the channel capacity and the complexity of system, however, according to quick development in circuit techniques and miniaturization of devices, the JPCIC is expected to be an attractive technology for MIMO system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gore, D. A., Heath, R. W, Jr, & Paulraj, A. (2002). Transmit selection in spatial multiplexing systems. IEEE Communications Letters, 6(11), 491–493.

    Article  Google Scholar 

  2. Siriteanu, C., Blostein, S. D., Takemura, A., Hyundong, S., Yousefi, S., & Kuriki, S. (2014). Exact MIMO zero-forcing detection analysis for transmit-correlated rician fading. IEEE Transactions on Wireless Communications, 13(3), 1514–1527.

    Article  Google Scholar 

  3. Park, J., & Chun, J. (2012). Improved lattice reduction-aided MIMO successive interference cancellation under imperfect channel estimation. IEEE Transactions on Signal Processing, 60(6), 3346–3351.

    Article  MathSciNet  Google Scholar 

  4. Jian, Z., & Zheng, Y. R. (2011). Frequency-domain turbo equalization with soft successive interference cancellation for single carrier MIMO underwater acoustic communications. IEEE Transactions on Wireless Communications, 10(9), 2872–2882.

    Article  Google Scholar 

  5. McKay, M. R., Collings, I. B., & Tulino, A. M. (2010). Achievable sum rate of MIMO MMSE receivers: A general analytic framework. IEEE Transactions on Information Theory, 56(1), 396–410.

    Article  MathSciNet  Google Scholar 

  6. Mehana, A. H., & Nosratinia, A. (2012). Diversity of MMSE MIMO receivers. IEEE Transactions on Information Theory, 58(11), 6788–6805.

    Article  MathSciNet  Google Scholar 

  7. Lin, S. C., & Su, H. J. (2007). Practical vector dirty paper coding for MIMO Gaussian broadcast channels. IEEE Journal on Selected Areas in Communications, 25(7), 1345–1357.

    Article  MathSciNet  Google Scholar 

  8. Jindal, N., & Goldsmith, A. (2005). Dirty-paper coding versus TDMA for MIMO broadcast channels. IEEE Transactions on Information Theory, 51(5), 1783–1794.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zanella, A., & Chiani, M. (2012). Reduced complexity power allocation strategies for MIMO systems with singular value decomposition. IEEE Transactions on Vehicular Technology, 61(9), 4031–4041.

    Article  Google Scholar 

  10. Rosas, F., & Oberli, C. (2013). Nakagami-m approximations for multiple-input multiple-output singular value decomposition transmissions. IET Communications, 7(6), 554–561.

    Article  MathSciNet  Google Scholar 

  11. Chen, Y. L., Zhan, C. Z., Jheng, T. J., & Wu, A. Y. (2013). Reconfigurable adaptive singular value decomposition engine design for high-throughput MIMO-OFDM systems. IEEE Transactions on Very Large Scale Integration Systems, 21(4), 747–760.

    Article  Google Scholar 

  12. Zhang, J., Wang, Y., Ding, L., & Gao, J. (2013). On the error probability of spatial modulation over keyhole MIMO channels. IEEE Communications Letters, 17(12), 2221–2224.

    Article  Google Scholar 

  13. Chang, D. C., & Guo, D. L. (2013). Spatial-division multiplexing MIMO detection based on a modified layered OSIC scheme. IEEE Transactions on wireless Communications, 12(9), 4258–4271.

    Article  Google Scholar 

  14. Nam, T. L., Juntti, M., Bengtsson, M., & Ottersten, B. (2013). Weighted sum rate maximization for MIMO broadcast channels using dirty paper coding and zero-forcing methods. IEEE Transactions on Communications, 61(6), 2362–2373.

    Article  Google Scholar 

  15. Jisheng, D., Chang, C., Ye, Z., & Hung, Y. S. (2009). An efficient greedy scheduler for zero-forcing dirty-paper coding. IEEE Transactions on Communications, 57(7), 1939–1943.

    Article  Google Scholar 

  16. Zanella, A., Chiani, M., & Win, M. Z. (2005). MMSE reception and successive interference cancellation for MIMO systems with high spectral efficiency. IEEE Transactions on wireless Communications, 4(3), 1244–1254.

    Article  Google Scholar 

  17. Gamal, H. E., & Hammons, A. R. J. (2003). On the design of algebraic space-time codes for MIMO block-fading channels. IEEE Transactions on Information Theory, 49(1), 151–163.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gong, Y., & Letaief, K. B. (2007). On the error probability of orthogonal space-time block codes over keyhole MIMO channels. IEEE Transactions on Wireless Communications, 6(9), 3402–3409.

    Article  Google Scholar 

  19. Wang, W. Q. (2011). Space-time coding MIMO-OFDM SAR for high-resolution imaging. IEEE Transactions on Geoscience and Remote Sensing, 49(8), 3094–3104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Thanh Hiep.

Appendices

Appendix 1: Creation method of orthogonal matrices

In Sect. 2.2, the \({\varvec{\Phi }}_{\mathrm{12,2}}{\varvec{\Phi }}_{\mathrm{12,1}}\) is indicated to be orthogonal to \(\mathbf{H}_{\mathrm{12}}\mathbf{P}_{\mathrm{12}}\). the design of \({\varvec{\Phi }}_{\mathrm{12,1}}\) and \({\varvec{\Phi }}_{\mathrm{12,2}}\) are represented as follows. Let

$$\begin{aligned} \mathbf{Z}& \equiv \mathbf{H}_{\mathrm{12}}\mathbf{P}_{\mathrm{12}}, \\&= \begin{bmatrix} {\mathrm{z}}_\mathrm{11}&{\mathrm{z}}_\mathrm{12} \\ {\mathrm{z}}_{\mathrm{21}}&{\mathrm{z}}_{\mathrm{22}}\end{bmatrix}. \end{aligned}$$
(27)

There are many methods to design \({\varvec{\Phi }}_{\mathrm{12,1}}\) and \({\varvec{\Phi }}_{\mathrm{12,2}}\). One of them is to create \({\varvec{\Phi }}_{\mathrm{12,1}}\) subject to

$$\begin{aligned} {\varvec{\Phi }}_{\mathrm{12,1}}(\mathrm 1)\left[ \begin{array}{c}{\mathrm{z}}_{\mathrm{11}} \\ {\mathrm{z}}_{\mathrm{21}} \end{array} \right] =0, \\ {\varvec{\Phi }}_{\mathrm{12,1}}(\mathrm 2)\left[ \begin{array}{c}{\mathrm{z}}_{\mathrm{11}} \\ {\mathrm{z}}_{\mathrm{21}} \end{array} \right] =0. \end{aligned}$$
(28)

Therefore,

$$\begin{aligned} {\varvec{\Phi }}_{\mathrm{12,1}} \mathbf{H}_{\mathrm{12}}\mathbf{P}_{\mathrm{12}} =\begin{bmatrix} 0&{\hat{\mathrm{z}}}_\mathrm{12} \\ 0&{\hat{\mathrm{z}}}_{\mathrm{22}}\end{bmatrix}. \end{aligned}$$
(29)

And then, create \({\varvec{\Phi }}_{\mathrm{12,2}}\) subject to

$$\begin{aligned} {\varvec{\Phi }}_{\mathrm{12,2}}(\mathrm{1})\left[ \begin{array}{c} {\hat{\mathrm{z}}}_{\mathrm{12}} \\ \hat{{\mathrm{z}}}_{\mathrm{22}} \end{array} \right] =0, \\ {\varvec{\Phi }}_{\mathrm{12,2}}(\mathrm{\mathrm 2})\left[ \begin{array}{c}{\hat{\mathrm{z}}}_{\mathrm{12}} \\ {\hat{\mathrm{z}}}_{\mathrm{22}} \end{array} \right] =0. \end{aligned}$$
(30)

We can indicate an example as

$$\begin{aligned} {\varvec{\Phi }}_{\mathrm{12,1}}\equiv & {} \begin{bmatrix} {\mathrm{-z}}_{\mathrm{21}}&{\mathrm{z}}_{\mathrm{11}} \\ {\mathrm{-z}}_{\mathrm{21}}&{{\mathrm{z}}}_{\mathrm{11}}\end{bmatrix}. \\ {\varvec{\Phi }}_{\mathrm{12,2}}\equiv & {} \begin{bmatrix} -1&1 \\ -1&1 \end{bmatrix}. \end{aligned}$$
(31)

As explained above, a vector with length of p can be designed to be orthogonal to \(\mathrm{p}-1\) vectors with the same length. Consequently, every row of matrix \({\varvec{\Phi }}_{\mathrm{p}_{\mathrm{sub}},1}\) is created to be orthogonal to the first \(\mathrm{p}-1\) columns of \(\mathbf{Z}\). Therefore,

$$\begin{aligned} {\varvec{\Phi }}_{\mathrm{p}_{\mathrm{sub}},1} \mathbf{H}_{{\mathrm{p}}_{\mathrm{sub}}}\mathbf{P}_{{\mathrm{p}}_{\mathrm{sub}}}= \begin{bmatrix} 0&0&\cdots&{\hat{\mathrm{z}}}_\mathrm{1p} \\&\cdots&\\ 0&0&\cdots&{\hat{\mathrm{z}}}_{\mathrm{p}\mathrm{p}}\end{bmatrix}, \end{aligned}$$
(32)

and \({\varvec{\Phi }}_{\mathrm{p}_{\mathrm{sub}},2}\) is designed to be orthogonal to the last column of \({\varvec{\Phi }}_{\mathrm{p}_{\mathrm{sub}},1} \mathbf{H}_{{\mathrm{p}}_{\mathrm{sub}}}\mathbf{P}_{{\mathrm{p}}_{\mathrm{sub}}}\), \(\left[ \begin{array}{c}{\hat{\mathrm{z}}}_\mathrm{1p}\, {\hat{\mathrm{z}}}_\mathrm{2p}\,\cdots \, {\hat{\mathrm{z}}}_{\mathrm{p}\mathrm{p}} \end{array} \right] ^{\mathrm{T}}\), as similar to (30).

Appendix 2: Calculation method of q11, q12

The (10) can be represented as

$$\begin{aligned}&\begin{bmatrix} \hat{\mathrm{p}}_\mathrm{11}&\hat{\mathrm{p}}_\mathrm{12} \\ \hat{\mathrm{p}}_{\mathrm{21}}&\hat{\mathrm{p}}_\mathrm{22}\end{bmatrix} \left[ \begin{array}{c}\mathrm{s}_{\mathrm{3}} \\ \mathrm{s}_{\mathrm{4}} \end{array} \right] (1) \\&\quad +{ q}_{11} \begin{bmatrix} \mathrm{k}_\mathrm{11}&\mathrm{k}_\mathrm{12} \\ \mathrm{k}_\mathrm{21}&\mathrm{k}_\mathrm{22}\end{bmatrix} \left[ \begin{array}{c}\mathrm{s}_{\mathrm{3}} \\ \mathrm{s}_{\mathrm{4}} \end{array} \right] (1) \\&\quad +\mathrm{q}_{12} \begin{bmatrix} \mathrm{k}_\mathrm{11}&\mathrm{k}_\mathrm{12} \\ \mathrm{k}_\mathrm{21}&\mathrm{k}_\mathrm{22}\end{bmatrix} \left[ \begin{array}{c}\mathrm{s}_{\mathrm{3}} \\ \mathrm{s}_{\mathrm{4}} \end{array} \right] (2)=0, \end{aligned}$$
(33)

here \(\hat{{\mathbf{P}}} \equiv \mathbf{P}_{\mathrm{12}}^\mathrm{-1} \mathbf{P}_{\mathrm{23}}\). Therefore, it is changed as follows.

$$\begin{aligned} \left( \hat{\mathrm{p}}_{11} + \mathrm{q}_{11}\mathrm{k}_{11} + \mathrm{q}_{12}\mathrm{k}_{21}\right) \mathrm{s}_{3}+ \left( \hat{\mathrm{p}}_{12} + \mathrm{q}_{11}\mathrm{k}_{12} + \mathrm{q}_{12}\mathrm{k}_{22}\right) \mathrm{s}_{4} = 0. \end{aligned}$$
(34)

Since this equation is for all \(\mathrm{s}_{3}\) and \(\mathrm{s}_{4}\), we have

$$\begin{aligned} \hat{\mathrm{p}}_{11}+\mathrm{q}_{11}\mathrm{k}_{11}+\mathrm{q}_{12}\mathrm{k}_{21}&= 0, \\ \hat{\mathrm{p}}_{12}+\mathrm{q}_{11}\mathrm{k}_{12}+\mathrm{q}_{12}\mathrm{k}_{22}&= 0. \end{aligned}$$
(35)

As a result,

$$\begin{aligned} \mathrm{q}_{11}&= \frac{\hat{\mathrm{p}}_{12}\mathrm{k}_{21}-\hat{\mathrm{p}}_{11}\mathrm{k}_{22}}{\mathrm{k}_{11}\mathrm{k}_{22}-\mathrm{k}_{12}\mathrm{k}_{21}}, \\ \mathrm{q}_{12}&= \frac{\hat{\mathrm{p}}_{12}\mathrm{k}_{11}-\hat{\mathrm{p}}_{11}\mathrm{k}_{12}}{\mathrm{k}_{21}\mathrm{k}_{12}-\mathrm{k}_{22}\mathrm{k}_{11}}, \end{aligned}$$
(36)

and matrices \(\mathbf{P}_{\mathrm{12}}\) and \(\mathbf{P}_{\mathrm{23}}\) should be designed subject to \(\hat{\mathrm{p}}_{12}\mathrm{k}_{21}-\hat{\mathrm{p}}_{11}\mathrm{k}_{22}\ne 0\), \(\hat{\mathrm{p}}_{12}\mathrm{k}_{11}-\hat{\mathrm{p}}_{11}\mathrm{k}_{12}\ne 0\) and \({k}_{21}{ k}_{12}-{k}_{22}{k}_{11}\ne 0\). Notice that \(\mathbf{K}_{\mathrm{23}}={\varvec{\Phi }}_{\mathrm{12,2}} {\varvec{\Phi }}_{\mathrm{12,1}} \mathbf{H}_{\mathrm{12}}\mathbf{P}_{\mathrm{23}}\).

Appendix 3: Taylor expansion of pseudo inverse matrix

We are going to prove that

$$\begin{aligned} \left( \mathrm{\rho } {\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}\! + \!{\xi } {\bar{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}\right) ^{\mathrm{-1}}\!=\!{\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}}\left( \mathrm{\rho } \mathbf{I}_{\mathrm{p}} \! +\! {\xi } {\bar{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}{\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}}\right) . \end{aligned}$$
(37)

We have

$$\begin{aligned}&\left( \mathrm{\rho } {\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}} + {\xi } {\bar{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}\right) ^{\mathrm{-1}} \\&\quad =\left( \mathrm{\rho } {\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}} {\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}} {\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}\! + \!{\xi } {\bar{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}} {\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}} {\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}\right) ^{\mathrm{-1}}, \\&\quad =\left( \left( {\rho } \mathbf{I}_{\mathrm{p}} + \!{\xi } {\bar{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}{\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}}\right) {\hat{H}}_{{\mathrm{p}}_{\mathrm{sub}}}\right) ^{\mathrm{-1}}, \\&\quad ={\rho } {\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}}\left( \mathbf{I}_{\mathrm{p}} + \frac{\xi }{\mathrm{\rho } } {\bar{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}{\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}}\right) ^{\mathrm{-1}}, \end{aligned}$$
(38)

and the Taylor expansion is applied to.

$$\begin{aligned}&\left( \mathbf{I}_{\mathrm{p}} + \frac{\xi }{{\rho }} {\bar{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}{\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}}\right) ^{\mathrm{-1}} \\&\quad =\mathbf{I}_{\mathrm{p}} - \frac{\xi }{{\rho }} {\bar{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}{\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}}+\left( \frac{\xi }{{\rho }} {\bar{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}} {\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}}\right) ^{\mathrm{2}} -\cdots , \\&\quad \approx \mathbf{I}_{\mathrm{p}} - \frac{\xi }{{\rho } } {\bar{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}{\hat{\mathbf{H}}}_{{\mathrm{p}}_{\mathrm{sub}}}^{\mathrm{-1}}. \end{aligned}$$
(39)

From (38) and (39), the (37) is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiep, P.T., Son, V.V. Joint pre-processing co-channel interference cancellation for single user MIMO. Wireless Netw 22, 2597–2606 (2016). https://doi.org/10.1007/s11276-015-1118-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1118-6

Keywords

Navigation