[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Regional Frequency Analysis of Extreme Rainfalls in the West Coast of Peninsular Malaysia using Partial L-Moments

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This study was to reinstate the development of regional frequency analysis using L-moments approach. The Partial L-moments (PL-moments) method was employed and a new relationship for homogeneity analysis is developed. For this study, the PL-moments for generalized logistic (GLO), generalized pareto (GPA) and generalized value (GEV) distributions were derived based on the formula defined by Wang (Water Resour Res 32:1767–1771, 1996). The three distributions are used to develop the regional frequency analysis procedures. As a case of study, the Selangor catchment that consists of 30 sites which located on the west coast of Peninsular Malaysia has chosen as sample. Based on L-moment and PL-moment ratio diagrams as well as Z-test statistics, the GEV and GLO were identified as the best distributions to represent the statistical properties of extreme rainfalls in Selangor. Monte Carlo simulation shows that the method of PL-moments would outperform L-moments method for estimation of large returns period event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abolverdi J, Khalili D (2010) Development of regional rainfall annual maxima for Southwestern Iran by L-moments. Water Resour Manag 24:2501–2526

    Article  Google Scholar 

  • Bhattarai KP (2004) Partial L-moments for the analysis of censored flood samples. Hydrol Sci J 49(5):855–868

    Article  Google Scholar 

  • Cunnane C (1987) Statistical distributions for flood frequency analysis. World Meteorological Organization Operational Hydrology Report No:33

  • Ellouze M, Abida H (2008) Regional flood frequency analysis in Tunisia: identification of regional distriutions. Water Resour Res 22:943–957

    Google Scholar 

  • Fowler HJ, Kilsby CG (2003) Aregional frequency analysis of United Kingdom extreme rainfall from 1961–2000. Int J Climatol 23:1313–1334

    Article  Google Scholar 

  • Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of distribution expressible in inverse form. Water Resour Res 15(5):1049–1054

    Article  Google Scholar 

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J Royal Stat Soc 52:105–124

    Google Scholar 

  • Hosking JRM (1995) The use of L-moments in the analysis of censored data. In: Balakrishnan N (ed) Recent advances in life-testing and reliability. CRC Press, Boca Raton, pp 545–564

    Google Scholar 

  • Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(2):271–281

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-Moments. Cambridge University Press, UK

    Book  Google Scholar 

  • Hussain Z, Pasha GR (2009) Regional flood frequency analysis of seven stations of Punjab, Pakistan, using L-moments. Water Resour Manag 23(10):1917–1933

    Article  Google Scholar 

  • Jingyi Z, Hall MJ (2004) Regional flood frequency analysis for the Gang-Ming River basin in China. J Hydrol 296:98–117

    Article  Google Scholar 

  • Koulouris et al (1998) L moment diagrams for censored observations. Water Resour Res 34(5):1241–1249

    Article  Google Scholar 

  • Kroll CN, Stedinger JR (1996) Estimation of moments and quantiles using censored samples. Water Resour Res 32(4):1005–1012

    Article  Google Scholar 

  • Lim YH, Lye LM (2003) Regional flood estimation for ungauged basins in Sarawak, Malaysia. Hydrol Sci J 48(1):79–94

    Article  Google Scholar 

  • Madsen H, Rasmussen PF, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events. 2. Regional modeling. Water Resour Manag 33(4):759–769

    Google Scholar 

  • Meshgi A, Khalili D (2009) Comprehensive evaluation of regional flood frequency analysis by L- and LH-moments. II. Development of LH-moments parameters for the generalized Pareto and generalized logistic distributions. Stoch Environ Res Ris Assess 23:137–152

    Article  Google Scholar 

  • Moisello U (2007) On the use of partial probability weighted moments in the analysis of hydrological extremes. Hydrol Processes 21:1265–1279

    Article  Google Scholar 

  • Noto LV, Loggia GL (2009) Use of L-moments approach for regional frequency analysis in Sicily Italy. Water Resour Manag 23:2207–2229

    Article  Google Scholar 

  • Pearson CP (1991) New Zealand regional flood frequency analysis using L-moments. J Hydrol 30(2):53–64

    Google Scholar 

  • Saf B (2009) Regional flood frequency analysis using L-moments for the West Mediterranean region of Turkey. Water Resour Manag 23(3):531–551

    Article  Google Scholar 

  • Schneider H (1986) Truncated and censored samples from normal populations. Marcel Dekker, New York, USA

  • Shabri AB, Daud ZM, Ariff NM (2011) Regional analysis of annual maximum rainfall using TL-moments method. Theor Appl Climatol. doi:10.1007/s0070401104375

  • Subramanya K (2007) Engineering hydrology, 2nd edn. McGraw-Hill, Singapore

    Google Scholar 

  • Wang QJ (1990a) Estimation of the GEV distribution from censored samples by method of partial probability weighted moments. J Hydrol 120:103–110

    Article  Google Scholar 

  • Wang QJ (1990b) Unbiased estimation of probability weighted moments and partial probability weighted moments from systematic and historical flood information and their application to estimating the GEV distribution. J Hydrol 120:115–124

    Article  Google Scholar 

  • Wang QJ (1996) Using partial probability weighted moments to fit the extreme value distributions to censored samples. Water Resour Res 32(6):1767–1771

    Article  Google Scholar 

  • Zin WWZ, Jemain AA, Ibrahim K (2009) The best fitting distribution of annual maximum rainfalls in Peninsular Malaysia based on methods of L-moment and LQ-moment. Theor Appl Climatol 96:337–344

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledged the financial support provided by Ministry of Higher Education, Malaysia and Universiti Sultan Zainal Abidin, Malaysia. The authors also would like to thank the Department of Irrigation and Drainage, Ministry of Natural Resources and Environment, Malaysia for providing the floods data and Universiti Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahrahtul Amani Zakaria.

Appendix

Appendix

1.1 PL-moments for the GEV Distribution (Wang 1996)

The CDF and quantile function of the GEV are given by

$$ F(x) = \exp \left\{ { - {{\left[ {1 - \frac{k}{\alpha}\left( {x - \xi } \right)} \right]}^{{1/k}}}} \right\}\quad k \ne 0 $$
(7)

and quantile function

$$ x(F) = \xi + \frac{\alpha }{k}\left[ {1 - {{\left( { - \ln F} \right)}^k}} \right]\quad k \ne 0 $$
(8)

Wang (1996) developed the partial PWMs of the GEV as

$$ (r + 1)\beta_r^{\prime} = \xi + \alpha H(r,{F_0},k) $$
(9)

where

$$ H(r,{F_0},k) = \frac{1}{k}\left\{ {1 - \frac{{\mathrm{P}\left[ {1 + k, - (r + 1)\ln {F_0}} \right]}}{{(1 - F_0^{{r + 1}}){{(r + 1)}^k}}}} \right\} $$

The first four PL-moments of the GEV are defined as

$$ \matrix{ {\lambda_1^{\prime} = \xi + \alpha H(0,{F_0},k)} \\ {\lambda_2^{\prime} = \alpha \left[ {H(1,{F_0},k) - H(0,{F_0},k)} \right]} \\ {\lambda_3^{\prime} = \alpha \left[ {2H(2,{F_0},k) - 3H(1,{F_0},k) + H(0,{F_0},k)} \right]} \\ {\lambda_4^{\prime} = \alpha \left[ {5H(3,{F_0},k) - 10H(2,{F_0},k) + 6H(1,{F_0},k) - H(0,{F_0},k)} \right]} \\ }<!end array> $$
(10)

In previous equation, P(.,.) is an Incomplete Gamma function

$$ \mathrm{P}(1 + k, - (r + 1)\ln {F_0}) = \int_0^{{ - (r + 1)\ln {F_0}}} {{\theta^k}} {e^{{ - \theta }}}d\theta $$
(11)

Then the first four PL-moments are computed to develop the PL-moment ratios (PL-Cv, PL-Cs and PL-Ck) for the GEV distribution.

1.2 Development of PL-moments for the GLO Distribution (This Research)

The CDF and quantile function of the GLO are given by

$$ F(x) = {\left\{ {1 + {{\left[ {1 - \frac{k}{\alpha}\left( {x - \xi } \right)} \right]}^{{1/k}}}} \right\}^{{ - 1}}}\quad k \ne 0 $$
(12)

and quantile function

$$ x(F) = \xi + \frac{\alpha }{k}\left[ {1 - {{\left( {\frac{{1 - F}}{F}} \right)}^k}} \right]\quad k \ne 0 $$
(13)

The partial PWMs of the GLO are developed as follows

$$ (r + 1)\beta_r^{\prime} = \xi + \frac{\alpha }{k} - \frac{{\alpha (r + 1)}}{{k(1 - F_0^{{r + 1}})}}{\mathrm{B}_{{1 - {F_0}}}}(1 + k,r - k + 1) $$
(14)

where \( {\mathrm{B}_{{1 - {F_0}}}}(.,.) \) is an Incomplete Beta function

$$ {\mathrm{B}_{{1 - {F_0}}}}(1 + k,r - k + 1) = \int_0^{{1 - {F_0}}} {{\theta^k}{{\left( {1 - \theta } \right)}^{{r - k}}}d} \theta $$

The first four PL-moments of the GLO are defined as

$$ \matrix{ {\lambda_1^{'} = \xi + \frac{\alpha }{k}\left[ {1 - \frac{{{\mathrm{B}_{{1 - {F_0}}}}(1 + k,1 - k)}}{{1 - {F_0}}}} \right]} \\ {\lambda_2^{'} = - \frac{\alpha }{k}\left[ {\frac{{2{\mathrm{B}_{{1 - {F_0}}}}(1 + k,2 - k)}}{{1 - F_0^2}} - \frac{{{\mathrm{B}_{{1 - {F_0}}}}(1 + k,1 - k)}}{{1 - {F_0}}}} \right]} \\ {\lambda_3^{'} = - \frac{\alpha }{k}\left[ {\frac{{6{\mathrm{B}_{{1 - {F_0}}}}(1 + k,3 - k)}}{{1 - F_0^3}} - \frac{{6{\mathrm{B}_{{1 - {F_0}}}}(1 + k,2 - k)}}{{1 - F_0^2}} + \frac{{{\mathrm{B}_{{1 - {F_0}}}}(1 + k,1 - k)}}{{1 - {F_0}}}} \right]} \\ {\lambda_4^{'} = - \frac{\alpha }{k}\left[ {\frac{{20{\mathrm{B}_{{1 - {F_0}}}}(1 + k,4 - k)}}{{1 - F_0^4}} - \frac{{30{\mathrm{B}_{{1 - {F_0}}}}(1 + k,3 - k)}}{{1 - F_0^3}} + \frac{{12{\mathrm{B}_{{1 - {F_0}}}}(1 + k,2 - k)}}{{1 - F_0^2}} - \frac{{{\mathrm{B}_{{1 - {F_0}}}}(1 + k,1 - k)}}{{1 - {F_0}}}} \right]} \\ }<!end array> $$
(15)

Then the first four PL-moments are computed to develop the PL-moment ratios (PL-Cv, PL-Cs and PL-Ck) for the GLO distribution.

1.3 Development of PL-moments for the GPA Distribution (This Research)

The CDF and quantile function of the GPA are given by

$$ F(x) = 1 - {\left\{ {1 - \frac{k}{\alpha}\left( {x - \xi } \right)} \right\}^{{1/k}}}\quad k \ne 0 $$
(16)

and quantile function

$$ x(F) = \xi + \frac{\alpha }{k}\left[ {1 - {{\left( {1 - F} \right)}^k}} \right]\quad k \ne 0 $$
(17)

The partial PWMs of the GPA are developed as follows

$$ (r + 1)\beta_r^{\prime} = \xi + \frac{\alpha }{k} - \frac{{\alpha (r + 1)}}{{k(1 - F_0^{{r + 1}})}}\int_{{{F_0}}}^1 {{{(1 - F)}^k}{F^r}dF} $$
(18)

The first four PL-moments of the GPA are defined as

$$ \matrix{ {\lambda_1^{'} = \xi + \frac{\alpha }{k}\left[ {1 - g{1_1}} \right]} \\ {\lambda_2^{'} = - \frac{\alpha }{k}\left[ {2g{2_1} - 2g{2_2} - g{1_1}} \right]} \\ {\lambda_3^{'} = - \frac{\alpha }{k}\left[ {6g{3_1} - 12g{3_2} + 6g{3_3} - 6g{2_1} + 6g{2_2} + g{1_1}} \right]} \\ {\lambda_4^{'} = - \frac{\alpha }{k}\left[ {20g{4_1} - 60g{4_2} + 60g{4_3} - 60g{4_4} - 30g{3_1} + 60g{3_2} - 30g{3_3} + 12g{2_1} - 12g{2_2} - g{1_1}} \right]} \\ }<!end array> $$
(19)

where

$$ g{s_r} = \frac{{{{\left( {1 - {F_0}} \right)}^{{k + r}}}}}{{\left( {k + r} \right)\left( {1 - F_0^s} \right)}} $$

Then the first four PL-moments are computed to develop the PL-moment ratios (PL-Cv, PL-Cs and PL-Ck) for the GPA distribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakaria, Z.A., Shabri, A. & Ahmad, U.N. Regional Frequency Analysis of Extreme Rainfalls in the West Coast of Peninsular Malaysia using Partial L-Moments. Water Resour Manage 26, 4417–4433 (2012). https://doi.org/10.1007/s11269-012-0152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-012-0152-8

Keywords

Navigation