[go: up one dir, main page]

Skip to main content
Log in

Reconstruction of Sparse Signals and Compressively Sampled Images Based on Smooth l 1-Norm Approximation

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Sparse signal reconstruction methods are used in a wide range of applications such as compressive sensing, denoising, signal separation and general linear inverse problems. The numerical algorithms used for the sparse signal recovery frequently involve finding solutions to the least squares optimization problem with l 1-norm regularization. As the l 1-norm penalty is not differentiable, so it rules out the possibility of using the efficient optimization techniques that call for the derivative of the objective function. This paper presents a hyperbolic tangent based surrogate function to closely approximate the l 1-norm regularization. Simultaneously, we also develop an iterative algorithm for sparse signal reconstruction using the gradient of the proposed smooth function. The algorithm can be used to recover the compressively sampled images from a reduced set of measurements. Various numerical and imaging experiments are used to illustrate the performance of the promising recovery method. It has been shown that the algorithm can be used to reconstruct the compressively sampled images from less number of acquired data, which makes fast imaging possible without compromising high spatial resolutions. The results are validated using phantom as well as original MR and microwave SAR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Fig. 8
Fig. 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Beck, A., & Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. Siam Journal Imaging Science, 2(1), 183–202. doi:10.1137/080716542.

    Article  MathSciNet  MATH  Google Scholar 

  2. Candes, E. J., Romberg, J. K., & Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements. Commun Pur. Applications of Mathematics, 59(8), 1207–1223. doi:10.1002/Cpa.20124.

    MATH  Google Scholar 

  3. Candès, E. J., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Information Theory, IEEE Transactions on, 52(2), 489–509.

    Article  MathSciNet  MATH  Google Scholar 

  4. Candes, E. J., & Wakin, M. B. (2008). An introduction to compressive sampling. Ieee Signal Processing Magazine, 25(2), 21–30. doi:10.1109/Msp.2007.914731.

    Article  Google Scholar 

  5. Baraniuk, R. G., Candes, E., Nowak, R., & Vetterli, M. (2008). Compressive sampling. Ieee Signal Processing Magazine, 25(2), 12–13. doi:10.1109/Msp.2008.915557.

    Article  Google Scholar 

  6. Yang, A.Y., Sastry, S.S., Ganesh, A., Ma, Y. (2010). Fast ℓ 1-minimization algorithms and an application in robust face recognition: A review. In: Image Processing (ICIP), 2010 17th IEEE International Conference on 2010, pp. 1849–1852. IEEE

  7. Bach, F., Jenatton, R., Mairal, J., & Obozinski, G. (2012). Optimization with sparsity-inducing penalties. Foundations and trends® in. Machine Learning, 4(1), 1–106.

    MATH  Google Scholar 

  8. Donoho, D. L. (2006). For most large underdetermined systems of linear equations the minimal Commun Pur. Applications of Mathematics, 59(6), 797–829.

    MathSciNet  MATH  Google Scholar 

  9. Candes, E. J., & Tao, T. (2006). Near-optimal signal recovery from random projections: universal encoding strategies? Information Theory, IEEE Transactions on, 52(12), 5406–5425.

    Article  MathSciNet  MATH  Google Scholar 

  10. Candes, E., Romberg, J. (2005). ll-magic: Recovery of sparse signals via convex programming. URL: www. acm. caltech. edu/l1magic/downloads/l1magic. pdf 4 (2005).

  11. Wright, S. J., Nowak, R. D., & Figueiredo, M. A. (2009). Sparse reconstruction by separable approximation. Signal Processing, IEEE Transactions on, 57(7), 2479–2493.

    Article  MathSciNet  Google Scholar 

  12. Malioutov, D.M., Cetin, M., Willsky, A.S. (2005). Homotopy continuation for sparse signal representation. In: acoustics, speech, and Signal Processing, (2005). Proceedings.(ICASSP'05). IEEE International Conference on 2005, pp. v/733-v/736 Vol. 735. IEEE

  13. Figueiredo, M. A., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. Selected topics in signal processing. IEEE Journal of, 1(4), 586–597.

    Google Scholar 

  14. Yang, J., & Zhang, Y. (2011). Alternating direction algorithms for l1-problems in compressive sensing. SIAM Journal on Scientific Computing, 33(1), 250–278.

    Article  MathSciNet  MATH  Google Scholar 

  15. Becker, S., Bobin, J., & Candès, E. J. (2011). NESTA: a fast and accurate first-order method for sparse recovery. Siam Journal Imaging Science, 4(1), 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  16. Haykin, S. S. (2008). Adaptive filter theory. Pearson Education India.

  17. Haykin, S.S., Haykin, S.S., Haykin, S.S., Haykin, S.S. (2009). Neural networks and learning machines, vol. 3. Pearson Education Upper Saddle River

  18. Menon, A., Mehrotra, K., Mohan, C. K., & Ranka, S. (1996). Characterization of a class of sigmoid functions with applications to neural networks. Neural Networks, 9(5), 819–835.

    Article  Google Scholar 

  19. Fang, X.-F., Zhang, J.-S., Li, Y.-Q. (2014). Sparse signal reconstruction based on Multiparameter approximation function with smoothed norm. Mathematical Problems in Engineering 9 (2014). doi:10.1155/2014/416542

  20. Wang, W., & Wang, Q. (2014). Approximated Function Based Spectral Gradient Algorithm for Sparse Signal Recovery. Statistics, Optimization & Information Computing, 2(1), 10–20.

    Article  MathSciNet  Google Scholar 

  21. Barzilai, J., & Borwein, J. M. (1988). Two-point step size gradient methods. IMA Journal of Numerical Analysis, 8(1), 141–148.

    Article  MathSciNet  MATH  Google Scholar 

  22. Shah, J., Qureshi, I., Omer, H., & Khaliq, A. (2014). A modified POCS-based reconstruction method for compressively sampled MR imaging. International Journal of Imaging Systems and Technology, 24(3), 203–207. doi:10.1002/ima.22095.

    Article  Google Scholar 

  23. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. Image Processing, IEEE Transactions on, 13(4), 600–612.

    Article  Google Scholar 

  24. Donoho, D. L., & Tanner, J. (2010). Precise undersampling theorems. Proceedings of the IEEE, 98(6), 913–924.

    Article  Google Scholar 

  25. Shah, J. A., Qureshi, I. M., Omer, H., Khaliq, A. A., & Deng, Y. (2015). Compressively sampled magnetic resonance image reconstruction using separable surrogate functional method. Concept Magnetics Reson A, 43(5), 157–165.

    Article  Google Scholar 

  26. Tropp, J. A., & Wright, S. J. (2010). Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE, 98(6), 948–958.

    Article  Google Scholar 

  27. Yang, A. Y., Genesh, A., Zhou, Z., Sastry, S. S., & Ma, Y. (2010). A Review of Fast L (1)-Minimization Algorithms for Robust Face Recognition. In. DTIC Document.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, J., Qureshi, I., Deng, Y. et al. Reconstruction of Sparse Signals and Compressively Sampled Images Based on Smooth l 1-Norm Approximation. J Sign Process Syst 88, 333–344 (2017). https://doi.org/10.1007/s11265-016-1168-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-016-1168-8

Keywords

Navigation