[go: up one dir, main page]

Skip to main content
Log in

Contact Mechanics for Randomly Rough Surfaces: On the Validity of the Method of Reduction of Dimensionality

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Recently, a 1D mapping procedure has been applied to many contact mechanics problems between randomly rough surfaces. I present a simple “back-of-the-envelope” argument to show that this theory fails qualitatively, in particular when surface roughness occurs on many length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In the contact mechanics theory of Popov et al., the roughness of the 1D substrate has a power spectrum related to that of the original 2D surface via the equation: \(C_\mathrm{1D} (q) = \pi q C_\mathrm{2D}(q)\). This definition of \(C_\mathrm{1D}\) result in a 1D line profile having the same mean-square (ms) roughness as the original 2D surface (with the power spectrum \(C_\mathrm{2D}\)). Using standard methods, a randomly rough line profile was generated using \(C_\mathrm{1D} (q)\). This line profile will have nearly the same statistical properties as a line scan from the original 2D surface with the power spectrum \(C_\mathrm{2D}\).

References

  1. Popov, V.L., Heß, M.: Method of Dimensionality Reduction in Contact Mechanics and Friction. Springer, Berlin (2014)

    Google Scholar 

  2. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965)

    Article  Google Scholar 

  3. Li, Q., Dimaki, A., Popov, M., Psakhie, S.G., Popov, V.L.: Kinetics of the coefficient of friction of elastomers. Sci. Rep. 4, 5795 (2014)

    Google Scholar 

  4. Popov, V.L., Voll, L., Li, Q., Chai, Y.S., Popov, M.: Generalized law of friction between elastomers and differently shaped rough bodies. Sci. Rep. 4, 3750 (2014)

    Google Scholar 

  5. Pohrt, R., Popov, V.L.: Contact stiffness of randomly rough surfaces. Sci. Rep. 3, 3293 (2013)

    Article  Google Scholar 

  6. Paggi, M., Pohrt, R., Popov, V.L.: Partial-slip frictional response of rough surfaces. Sci. Rep. 4, 5178 (2014)

    Google Scholar 

  7. Geike, T., Popov, V.L.: Mapping of three-dimensional contact problems into one dimension. Phys. Rev. E 76, 036710 (2007)

    Article  Google Scholar 

  8. Pohrt, R., Popov, V.L.: Normal contact stiffness of elastic solids with fractal rough surfaces. Phys. Rev. Lett. 108, 104301 (2012)

    Article  Google Scholar 

  9. Pohrt, R., Popov, V.L., Filippov, A.: Normal contact stiffness of elastic solids with fractal rough surfaces for one- and three-dimensional systems. Phys. Rev. E 86, 026710 (2012)

    Article  Google Scholar 

  10. Popov, V.L., Filippov, A.E.: Force of friction between fractal rough surface and elastomer. Tech. Phys. Lett. 36, 525 (2010)

    Article  Google Scholar 

  11. Popov, V.L.: Contact Mechanics and Friction, Physical Principles and Applications. Springer, Berlin (2010). (See Chapter 19)

    Google Scholar 

  12. Phys. Mesomech. 15, 4 (2012)

  13. Popov, V.L., Filippov, A.E.: Applicability of a reduced model to description of real contacts between rough surfaces with different Hirsch indices. Tech. Phys. Lett. 34, 722 (2008)

    Article  Google Scholar 

  14. Birthe, G., Pohrt, R., Teidelt, E., et al.: Maximum micro-slip in tangential contact of randomly rough self-affine surfaces. Wear 309, 256 (2014)

    Article  Google Scholar 

  15. Popov, V.L.: Method of dimensionality reduction in contact mechanics and tribology. Heterogeneous media. Phys. Mesomech. 17, 50 (2014)

    Article  Google Scholar 

  16. Li, Q., Popov, M., Dimaki, A., et al.: Friction between a viscoelastic body and a rigid surface with random self-affine roughness. Phys. Rev. Lett. 111, 034301 (2013)

    Article  Google Scholar 

  17. Psakhie, S.G., Popov, V.L.: Mesoscopic nature of friction and numerical simulation methods in tribology. Phys. Mesomech. 15, 251 (2012)

    Article  Google Scholar 

  18. Dimaki, A.V., Popov, V.L.: The method of reduction of dimensionality and its application to simulation of elastomer friction under complex dynamic loads. Phys. Mesomech. 15, 319 (2012)

    Article  Google Scholar 

  19. Pohrt, R., Popov, V.L.: Investigation of the dry normal contact between fractal rough surfaces using the reduction method, comparison to 3D simulations. Phys. Mesomech. 15, 275 (2012)

    Article  Google Scholar 

  20. Popov, V.L., Filippov, A.E.: Adhesive properties of contacts between elastic bodies with randomly rough self-affine surfaces: a simulation with the method of reduction of dimensionality. Phys. Mesomech. 15, 324 (2012)

    Article  Google Scholar 

  21. Nguyen, H.X., Teidelt, E., Popov, V.L., et al.: Dynamic tangential contact of rough surfaces in stick-slip microdrives: modeling and validation using the method of dimensionality Reduction. Phys. Mesomech. 17(4), 304–310 (2014)

    Article  Google Scholar 

  22. Grzemba, B., Pohrt, R., Teidelt, E., et al.: Maximum micro-slip in tangential contact of randomly rough self-affine surfaces. Wear 309, 256 (2014)

    Article  Google Scholar 

  23. Popov, V.L.: Basic ideas and applications of the method of reduction of dimensionality in contact mechanics. Phys. Mesomech. 15(5–6), 254–263 (2012)

    Article  Google Scholar 

  24. Teidelt, E., Willert, E., Filippov, A.E., et al.: Modeling of the dynamic contact in stick-slip microdrives using the method of reduction of dimensionality. Phys. Mesomech. 15, 287 (2012)

    Article  Google Scholar 

  25. Lyashenko, I.A., Pastewka, L., Persson, B.N.J.: On the validity of the method of reduction of dimensionality: area of contact, average interfacial separation and contact stiffness. Tribol. Lett. 52(3), 223–229 (2013)

    Article  Google Scholar 

  26. Lyashenko, I.A., Pastewka, L., Persson, B.N.J.: Comment on friction between a viscoelastic body and a rigid surface with random self-affine roughness. Phys. Rev. Lett. 111, 189401 (2013)

    Article  Google Scholar 

  27. Pastewka, L., Prodanov, N., Lorenz, B., Müser, M.H., Robbins, M.O., Persson, B.N.J.: Finite-size effects in the interfacial stiffness of rough elastic contacts. Phys. Rev. E 87, 062809 (2013). See also arXiv:1210.4255v1 and arXiv:1210.4635v1

  28. Scaraggi, M., Putignano, C., Carbone, G.: Elastic contact of rough surfaces: a simple criterion to make 2D isotropic roughness equivalent to 1D one. Wear 297, 811 (2013)

    Article  Google Scholar 

  29. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840 (2001)

    Article  Google Scholar 

  30. Klüppel, M., Heinrich, G.: Rubber friction on self-affine road tracks. Rubber Chem. Technol. 73, 578 (2000)

    Article  Google Scholar 

  31. Westergaard, H.M.: Bearing pressures and cracks. Trans. ASME J. Appl. Mech. 6, 49 (1939)

    Google Scholar 

  32. Persson, B.N.J.: On the fractal dimension of rough surfaces. Tribol. Lett. 54, 99 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The research work was performed within a Reinhart-Koselleck project funded by the Deutsche Forschungsgemeinschaft (DFG). The authors would like to thank DFG for the project support under the reference German Research Foundation DFG-Grant: MU 1225/36-1. This work is supported in part by COST Action MP1303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo N. J. Persson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persson, B.N.J. Contact Mechanics for Randomly Rough Surfaces: On the Validity of the Method of Reduction of Dimensionality. Tribol Lett 58, 11 (2015). https://doi.org/10.1007/s11249-015-0498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0498-1

Keywords

Navigation