[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Multi-objective optimization for information-energy transfer trade-offs in full-duplex multi-user MIMO cognitive networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper considers simultaneous wireless information and power transfer enabled full-duplex multi-user multiple-input multiple-output cognitive networks. By taking into account imperfect channel state information (CSI) of the links toward primary users (PUs), this paper aims to simultaneously optimize two design objectives, namely the achievable sum-rate and sum harvested energy in the secondary network. Hence, the design problem is modelled as a multi-objective optimization problem (MOOP) subject to the transmit power constraint at the base station and robust harmful interference constraints at the PUs. Then, to find the Pareto set, the MOOP is rewritten to a single-objective problem (SOOP) by using the modified weighted Tchebycheff method. However, it is mathematically difficult to solve the transformed SOOP due to the non-concavity of the sum-rate function and the semi-infinite nature of the robust interference constraints. To overcome this challenge, we use the difference of two convex functions (DC) technique and S-procedure theory to recast the design optimization problem as the sequential convex programming. Various numerical simulations are conducted to illustrate the Pareto optimal solution sets, the robustness of interference constraints against CSI uncertainties, and trade-offs between the achievable sum-rate and harvested energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zhang, Z., Long, K., Vasilakos, A. V., & Hanzo, L. (2016). Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of the IEEE, 104(7), 1369–1409. https://doi.org/10.1109/JPROC.2015.2497203.

    Article  Google Scholar 

  2. Li, R., Chen, Y., Li, G. Y., & Liu, G. (2017). Full-duplex cellular networks. IEEE Communications Magazine, 55(4), 184–191. https://doi.org/10.1109/MCOM.2017.1600361CM.

    Article  Google Scholar 

  3. Nguyen, D., Tran, L. N., Pirinen, P., & Latva-aho, M. (2013). Precoding for full duplex multiuser MIMO systems: Spectral and energy efficiency maximization. IEEE Transactions on Signal Processing, 61(16), 4038–4050. https://doi.org/10.1109/TSP.2013.2267738.

    Article  Google Scholar 

  4. Huberman, S., & Le-Ngoc, T. (2015). Full-duplex MIMO precoding for sum-rate maximization with sequential convex programming. IEEE Transactions on Vehicular Technology, 64(11), 5103–5112. https://doi.org/10.1109/TVT.2014.2380775.

    Article  Google Scholar 

  5. Tam, H. H. M., Tuan, H. D., & Ngo, D. T. (2016). Successive convex quadratic programming for quality-of-service management in full-duplex MU-MIMO multicell networks. IEEE Transactions on Communications, 64(6), 2340–2353. https://doi.org/10.1109/TCOMM.2016.2550440.

    Article  Google Scholar 

  6. Aquilina, P., Cirik, A. C., & Ratnarajah, T. (2017). Weighted sum rate maximization in full-duplex multi-user multi-cell MIMO networks. IEEE Transactions on Communications, 65(4), 1590–1608. https://doi.org/10.1109/TCOMM.2017.2652475.

    Article  Google Scholar 

  7. Cirik, A. C., Biswas, S., Vuppala, S., & Ratnarajah, T. (2016). Robust transceiver design for full duplex multiuser MIMO systems. IEEE Wireless Communications Letters, 5(3), 260–263. https://doi.org/10.1109/LWC.2016.2536607.

    Article  Google Scholar 

  8. Cirik, A. C., Wang, R., Hua, Y., & Latva-aho, M. (2015). Weighted sum-rate maximization for full-duplex MIMO interference channels. IEEE Transactions on Communications, 63(3), 801–815. https://doi.org/10.1109/TCOMM.2015.2397886.

    Article  Google Scholar 

  9. Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Process Magazine, 29(3), 101–116. https://doi.org/10.1109/MSP.2012.2183771.

    Article  Google Scholar 

  10. Gharavol, E. A., Liang, Y., & Mouthaan, K. (2011). Robust linear transceiver design in MIMO ad hoc cognitive radio networks with imperfect channel state information. IEEE Transactions on Wireless Communications, 10(5), 1448–1457. https://doi.org/10.1109/TWC.2011.030911.100337.

    Article  Google Scholar 

  11. Zhang, Y., DallAnese, E., & Giannakis, G. B. (2012). Distributed optimal beamformers for cognitive radios robust to channel uncertainties. IEEE Transactions on Signal Processing, 60(12), 6495–6508. https://doi.org/10.1109/TSP.2012.2218240.

    Article  Google Scholar 

  12. Kha, H. H., Vu, T. T., & Do-Hong, T. (2017). Energy-efficient transceiver designs for multiuser MIMO cognitive radio networks via interference alignment. Telecommunication Systems, 66(3), 469–480.

    Article  Google Scholar 

  13. Kha, H. H., & Ta, H. Q. (2017). Min-max MSE-based interference alignment for transceiver designs in cognitive radio networks. Radioengineering, 26(1), 170–178. https://doi.org/10.13164/re.2017.0170.

    Article  Google Scholar 

  14. Nguyen, V. D., Tran, L. N., Duong, T. Q., Shin, O., & Farrell, R. (2017). An efficient precoder design for multiuser MIMO cognitive radio networks with interference constraints. IEEE Transactions on Vehicular Technology, 66(5), 3991–4004. https://doi.org/10.1109/TVT.2016.2602844.

    Article  Google Scholar 

  15. Nguyen, X. X., & Kha, H. H. (2019). Precoding designs for full-duplex multi-user MIMO cognitive networks with imperfect CSI. REV Journal on Electronics and Communications,. https://doi.org/10.21553/rev-jec.229.

    Article  Google Scholar 

  16. Cirik, A. C., Wang, R., Rong, Y., & Hua, Y. (2015). MSE-based transceiver designs for full-duplex MIMO cognitive radios. IEEE Transactions on Communications, 63(6), 2056–2070. https://doi.org/10.1109/TCOMM.2015.2434385.

    Article  Google Scholar 

  17. Cirik, A. C., Biswas, S., Taghizadeh, O., & Ratnarajah, T. (2018). Robust transceiver design in full-duplex MIMO cognitive radios. IEEE Transactions on Vehicular Technology, 67(2), 1313–1330. https://doi.org/10.1109/TVT.2017.2755665.

    Article  Google Scholar 

  18. Buzzi, S., Chih-Lin, I., Klein, T. E., Poor, H. V., Yang, C., & Zappone, A. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 34(4), 697–709. https://doi.org/10.1109/JSAC.2016.2550338.

    Article  Google Scholar 

  19. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001. https://doi.org/10.1109/TWC.2013.031813.120224.

    Article  Google Scholar 

  20. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767. https://doi.org/10.1109/TCOMM.2013.13.120855.

    Article  Google Scholar 

  21. Shi, Q., Liu, L., Xu, W., & Zhang, R. (2014). Joint transmit beamforming and receive power splitting for MISO SWIPT systems. IEEE Transactions on Wireless Communications, 13(6), 3269–3280. https://doi.org/10.1109/TWC.2014.041714.131688.

    Article  Google Scholar 

  22. Nasir, A. A., Tuan, H. D., Ngo, D. T., Durrani, S., & Kim, D. I. (2016). Path-following algorithms for beamforming and signal splitting in RF energy harvesting networks. IEEE Communications Letters, 20(8), 1687–1690. https://doi.org/10.1109/LCOMM.2016.2578921.

    Article  Google Scholar 

  23. Nguyen, V., Duong, T. Q., Tuan, H. D., Shin, O., & Poor, H. V. (2017). Spectral and energy efficiencies in full-duplex wireless information and power transfer. IEEE Transactions on Communications, 65(5), 2220–2233. https://doi.org/10.1109/TCOMM.2017.2665488.

    Article  Google Scholar 

  24. Tam, H. H. M., Tuan, H. D., Nasir, A. A., Duong, T. Q., & Poor, H. V. (2017). MIMO energy harvesting in full-duplex multi-user networks. IEEE Transactions on Wireless Communications, 16(5), 3282–3297. https://doi.org/10.1109/TWC.2017.2679055.

    Article  Google Scholar 

  25. Song, C., Lee, H., & Lee, K. (2018). Optimal precoder designs for sum-utility maximization in SWIPT-enabled multi-user MIMO cognitive radio networks. IEEE Systems Journal,. https://doi.org/10.1109/JSYST.2018.2875762.

    Article  Google Scholar 

  26. Marler, R., & Arora, J. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395. https://doi.org/10.1007/s00158-003-0368-6.

    Article  Google Scholar 

  27. Bjornson, E., Jorswieck, E. A., Debbah, M., & Ottersten, B. (2014). Multiobjective signal processing optimization: The way to balance conflicting metrics in 5G systems. IEEE Signal Processing Magazine, 31(6), 14–23. https://doi.org/10.1109/MSP.2014.2330661.

    Article  Google Scholar 

  28. Sun, Y., Ng, D. W. K., Zhu, J., & Schober, R. (2016). Multi-objective optimization for robust power efficient and secure full-duplex wireless communication systems. IEEE Transactions on Wireless Communications, 15(8), 5511–5526. https://doi.org/10.1109/TWC.2016.2560815.

    Article  Google Scholar 

  29. Ng, D. W. K., Lo, E. S., & Schober, R. (2016). Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3166–3184. https://doi.org/10.1109/TVT.2015.2436334.

    Article  Google Scholar 

  30. Li, Z., Gong, S., Xing, C., Fei, Z., & Yan, X. (2017). Multi-objective optimization for distributed MIMO networks. IEEE Transactions on Communications, 65(10), 4247–4259. https://doi.org/10.1109/TCOMM.2017.2722478.

    Article  Google Scholar 

  31. Rubio, J., Pascual-Iserte, A., Palomar, D. P., & Goldsmith, A. (2017). Joint optimization of power and data transfer in multiuser MIMO systems. IEEE Transactions on Signal Processing, 65(1), 212–227. https://doi.org/10.1109/TSP.2016.2614794.

    Article  Google Scholar 

  32. Wu, W., Wu, S., & Wang, B. (2017). Robust multi-objective beamforming design for power efficient and secure communication in MU-MISO networks. IEEE Access, 5, 13,277–13,285. https://doi.org/10.1109/ACCESS.2017.2726581.

    Article  Google Scholar 

  33. Ha, T. N., & Kha, H. H. (2019). Harvested energy and spectral efficiency trade-offs in multicell MIMO wireless networks. Radioengineering, 28(1), 331–339. https://doi.org/10.13164/re.2019.0331.

    Article  Google Scholar 

  34. Kha, H. H., Tuan, H. D., & Nguyen, H. H. (2012). Fast global optimal power allocation in wireless networks by local D.C. programming. IEEE Transactions on Wireless Communications, 11(2), 510–515. https://doi.org/10.1109/TWC.2011.120911.110139.

    Article  Google Scholar 

  35. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  36. Grant, M., Boyd, S., & Ye, Y. (2008). Cvx: Matlab software for disciplined convex programming. http://cvxr.com/cvx.

  37. Mosek, A. (2015). The mosek optimization toolbox for matlab manual. https://www.mosek.com.

  38. Bharadia, D., & Katti, S. (2014). Full duplex MIMO radios. In Proceedings of the 11th USENIX conference on networked systems design and implementation, USENIX Association (pp. 359–372) Berkeley, CA, USA.

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.04-2017.308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Hoang Kha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, XX., Kha, H.H., Thai, P.Q. et al. Multi-objective optimization for information-energy transfer trade-offs in full-duplex multi-user MIMO cognitive networks. Telecommun Syst 76, 85–96 (2021). https://doi.org/10.1007/s11235-020-00696-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00696-4

Keywords