Abstract
This paper considers simultaneous wireless information and power transfer enabled full-duplex multi-user multiple-input multiple-output cognitive networks. By taking into account imperfect channel state information (CSI) of the links toward primary users (PUs), this paper aims to simultaneously optimize two design objectives, namely the achievable sum-rate and sum harvested energy in the secondary network. Hence, the design problem is modelled as a multi-objective optimization problem (MOOP) subject to the transmit power constraint at the base station and robust harmful interference constraints at the PUs. Then, to find the Pareto set, the MOOP is rewritten to a single-objective problem (SOOP) by using the modified weighted Tchebycheff method. However, it is mathematically difficult to solve the transformed SOOP due to the non-concavity of the sum-rate function and the semi-infinite nature of the robust interference constraints. To overcome this challenge, we use the difference of two convex functions (DC) technique and S-procedure theory to recast the design optimization problem as the sequential convex programming. Various numerical simulations are conducted to illustrate the Pareto optimal solution sets, the robustness of interference constraints against CSI uncertainties, and trade-offs between the achievable sum-rate and harvested energy.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zhang, Z., Long, K., Vasilakos, A. V., & Hanzo, L. (2016). Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of the IEEE, 104(7), 1369–1409. https://doi.org/10.1109/JPROC.2015.2497203.
Li, R., Chen, Y., Li, G. Y., & Liu, G. (2017). Full-duplex cellular networks. IEEE Communications Magazine, 55(4), 184–191. https://doi.org/10.1109/MCOM.2017.1600361CM.
Nguyen, D., Tran, L. N., Pirinen, P., & Latva-aho, M. (2013). Precoding for full duplex multiuser MIMO systems: Spectral and energy efficiency maximization. IEEE Transactions on Signal Processing, 61(16), 4038–4050. https://doi.org/10.1109/TSP.2013.2267738.
Huberman, S., & Le-Ngoc, T. (2015). Full-duplex MIMO precoding for sum-rate maximization with sequential convex programming. IEEE Transactions on Vehicular Technology, 64(11), 5103–5112. https://doi.org/10.1109/TVT.2014.2380775.
Tam, H. H. M., Tuan, H. D., & Ngo, D. T. (2016). Successive convex quadratic programming for quality-of-service management in full-duplex MU-MIMO multicell networks. IEEE Transactions on Communications, 64(6), 2340–2353. https://doi.org/10.1109/TCOMM.2016.2550440.
Aquilina, P., Cirik, A. C., & Ratnarajah, T. (2017). Weighted sum rate maximization in full-duplex multi-user multi-cell MIMO networks. IEEE Transactions on Communications, 65(4), 1590–1608. https://doi.org/10.1109/TCOMM.2017.2652475.
Cirik, A. C., Biswas, S., Vuppala, S., & Ratnarajah, T. (2016). Robust transceiver design for full duplex multiuser MIMO systems. IEEE Wireless Communications Letters, 5(3), 260–263. https://doi.org/10.1109/LWC.2016.2536607.
Cirik, A. C., Wang, R., Hua, Y., & Latva-aho, M. (2015). Weighted sum-rate maximization for full-duplex MIMO interference channels. IEEE Transactions on Communications, 63(3), 801–815. https://doi.org/10.1109/TCOMM.2015.2397886.
Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Process Magazine, 29(3), 101–116. https://doi.org/10.1109/MSP.2012.2183771.
Gharavol, E. A., Liang, Y., & Mouthaan, K. (2011). Robust linear transceiver design in MIMO ad hoc cognitive radio networks with imperfect channel state information. IEEE Transactions on Wireless Communications, 10(5), 1448–1457. https://doi.org/10.1109/TWC.2011.030911.100337.
Zhang, Y., DallAnese, E., & Giannakis, G. B. (2012). Distributed optimal beamformers for cognitive radios robust to channel uncertainties. IEEE Transactions on Signal Processing, 60(12), 6495–6508. https://doi.org/10.1109/TSP.2012.2218240.
Kha, H. H., Vu, T. T., & Do-Hong, T. (2017). Energy-efficient transceiver designs for multiuser MIMO cognitive radio networks via interference alignment. Telecommunication Systems, 66(3), 469–480.
Kha, H. H., & Ta, H. Q. (2017). Min-max MSE-based interference alignment for transceiver designs in cognitive radio networks. Radioengineering, 26(1), 170–178. https://doi.org/10.13164/re.2017.0170.
Nguyen, V. D., Tran, L. N., Duong, T. Q., Shin, O., & Farrell, R. (2017). An efficient precoder design for multiuser MIMO cognitive radio networks with interference constraints. IEEE Transactions on Vehicular Technology, 66(5), 3991–4004. https://doi.org/10.1109/TVT.2016.2602844.
Nguyen, X. X., & Kha, H. H. (2019). Precoding designs for full-duplex multi-user MIMO cognitive networks with imperfect CSI. REV Journal on Electronics and Communications,. https://doi.org/10.21553/rev-jec.229.
Cirik, A. C., Wang, R., Rong, Y., & Hua, Y. (2015). MSE-based transceiver designs for full-duplex MIMO cognitive radios. IEEE Transactions on Communications, 63(6), 2056–2070. https://doi.org/10.1109/TCOMM.2015.2434385.
Cirik, A. C., Biswas, S., Taghizadeh, O., & Ratnarajah, T. (2018). Robust transceiver design in full-duplex MIMO cognitive radios. IEEE Transactions on Vehicular Technology, 67(2), 1313–1330. https://doi.org/10.1109/TVT.2017.2755665.
Buzzi, S., Chih-Lin, I., Klein, T. E., Poor, H. V., Yang, C., & Zappone, A. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 34(4), 697–709. https://doi.org/10.1109/JSAC.2016.2550338.
Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001. https://doi.org/10.1109/TWC.2013.031813.120224.
Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767. https://doi.org/10.1109/TCOMM.2013.13.120855.
Shi, Q., Liu, L., Xu, W., & Zhang, R. (2014). Joint transmit beamforming and receive power splitting for MISO SWIPT systems. IEEE Transactions on Wireless Communications, 13(6), 3269–3280. https://doi.org/10.1109/TWC.2014.041714.131688.
Nasir, A. A., Tuan, H. D., Ngo, D. T., Durrani, S., & Kim, D. I. (2016). Path-following algorithms for beamforming and signal splitting in RF energy harvesting networks. IEEE Communications Letters, 20(8), 1687–1690. https://doi.org/10.1109/LCOMM.2016.2578921.
Nguyen, V., Duong, T. Q., Tuan, H. D., Shin, O., & Poor, H. V. (2017). Spectral and energy efficiencies in full-duplex wireless information and power transfer. IEEE Transactions on Communications, 65(5), 2220–2233. https://doi.org/10.1109/TCOMM.2017.2665488.
Tam, H. H. M., Tuan, H. D., Nasir, A. A., Duong, T. Q., & Poor, H. V. (2017). MIMO energy harvesting in full-duplex multi-user networks. IEEE Transactions on Wireless Communications, 16(5), 3282–3297. https://doi.org/10.1109/TWC.2017.2679055.
Song, C., Lee, H., & Lee, K. (2018). Optimal precoder designs for sum-utility maximization in SWIPT-enabled multi-user MIMO cognitive radio networks. IEEE Systems Journal,. https://doi.org/10.1109/JSYST.2018.2875762.
Marler, R., & Arora, J. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395. https://doi.org/10.1007/s00158-003-0368-6.
Bjornson, E., Jorswieck, E. A., Debbah, M., & Ottersten, B. (2014). Multiobjective signal processing optimization: The way to balance conflicting metrics in 5G systems. IEEE Signal Processing Magazine, 31(6), 14–23. https://doi.org/10.1109/MSP.2014.2330661.
Sun, Y., Ng, D. W. K., Zhu, J., & Schober, R. (2016). Multi-objective optimization for robust power efficient and secure full-duplex wireless communication systems. IEEE Transactions on Wireless Communications, 15(8), 5511–5526. https://doi.org/10.1109/TWC.2016.2560815.
Ng, D. W. K., Lo, E. S., & Schober, R. (2016). Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3166–3184. https://doi.org/10.1109/TVT.2015.2436334.
Li, Z., Gong, S., Xing, C., Fei, Z., & Yan, X. (2017). Multi-objective optimization for distributed MIMO networks. IEEE Transactions on Communications, 65(10), 4247–4259. https://doi.org/10.1109/TCOMM.2017.2722478.
Rubio, J., Pascual-Iserte, A., Palomar, D. P., & Goldsmith, A. (2017). Joint optimization of power and data transfer in multiuser MIMO systems. IEEE Transactions on Signal Processing, 65(1), 212–227. https://doi.org/10.1109/TSP.2016.2614794.
Wu, W., Wu, S., & Wang, B. (2017). Robust multi-objective beamforming design for power efficient and secure communication in MU-MISO networks. IEEE Access, 5, 13,277–13,285. https://doi.org/10.1109/ACCESS.2017.2726581.
Ha, T. N., & Kha, H. H. (2019). Harvested energy and spectral efficiency trade-offs in multicell MIMO wireless networks. Radioengineering, 28(1), 331–339. https://doi.org/10.13164/re.2019.0331.
Kha, H. H., Tuan, H. D., & Nguyen, H. H. (2012). Fast global optimal power allocation in wireless networks by local D.C. programming. IEEE Transactions on Wireless Communications, 11(2), 510–515. https://doi.org/10.1109/TWC.2011.120911.110139.
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
Grant, M., Boyd, S., & Ye, Y. (2008). Cvx: Matlab software for disciplined convex programming. http://cvxr.com/cvx.
Mosek, A. (2015). The mosek optimization toolbox for matlab manual. https://www.mosek.com.
Bharadia, D., & Katti, S. (2014). Full duplex MIMO radios. In Proceedings of the 11th USENIX conference on networked systems design and implementation, USENIX Association (pp. 359–372) Berkeley, CA, USA.
Acknowledgements
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.04-2017.308.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nguyen, XX., Kha, H.H., Thai, P.Q. et al. Multi-objective optimization for information-energy transfer trade-offs in full-duplex multi-user MIMO cognitive networks. Telecommun Syst 76, 85–96 (2021). https://doi.org/10.1007/s11235-020-00696-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-020-00696-4