[go: up one dir, main page]

Skip to main content
Log in

Manipulating and summarizing posterior simulations using random variable objects

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Practical Bayesian data analysis involves manipulating and summarizing simulations from the posterior distribution of the unknown parameters. By manipulation we mean computing posterior distributions of functions of the unknowns, and generating posterior predictive distributions. The results need to be summarized both numerically and graphically.

We introduce, and implement in R, an object-oriented programming paradigm based on a random variable object type that is implicitly represented by simulations. This makes it possible to define vector and array objects that may contain both random and deterministic quantities, and syntax rules that allow to treat these objects like any numeric vectors or arrays, providing a solution to various problems encountered in Bayesian computing involving posterior simulations.

We illustrate the use of this new programming environment with examples of Bayesian computing, demonstrating missing-value imputation, nonlinear summary of regression predictions, and posterior predictive checking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Chib, S.: Marginal likelihood from the Gibbs output. J. Am. Stat. Assoc. 90, 1313–1321 (1995)

    Article  MATH  Google Scholar 

  • Chib, S., Jeliazkov, I.: Marginal likelihood from the Metropolis-Hastings output. J. Am. Stat. Assoc. 96, 270–281 (2001)

    Article  MATH  Google Scholar 

  • Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 94, 247–253 (1990)

    Article  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman & Hall/CRC, London (2003)

    Google Scholar 

  • Gelman, A., King, G.: A unified model for evaluating electoral systems and redistricting plans. Am. J. Political Sci. 38, 514–554 (1994)

    Article  Google Scholar 

  • Gelman, A., King, G., Boscardin, W.J.: Estimating the probability of events that have never occurred: when does your vote matter? J. Am. Stat. Assoc. 93, 1–9 (1998)

    Article  MATH  Google Scholar 

  • Kerman, J.: Using random variable objects to compute probability simulations. Technical Report, Department of Statistics, Columbia University (2005)

  • Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput. 10, 325–337 (2000)

    Article  Google Scholar 

  • Oldford, R.W.: The Quail project: a current overview. Invited paper, 30th Symposium on the Interface, Minneapolis (1998). http://www.stats.uwaterloo.ca/~rwoldfor/papers/Interface1998/paper.pdf

  • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2004)

    Google Scholar 

  • Tierney, L.: LISP-STAT: An Object-Oriented Environment for Statistical Computing and Dynamic Graphics. Wiley, New York (1990)

    MATH  Google Scholar 

  • Sturtz, S., Ligges, U., Gelman, A.: R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw. 12(3), 1–16 (2005). ISSN 1548-7660

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jouni Kerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerman, J., Gelman, A. Manipulating and summarizing posterior simulations using random variable objects. Stat Comput 17, 235–244 (2007). https://doi.org/10.1007/s11222-007-9020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-007-9020-4

Keywords

Navigation