Abstract
We present a review on geomagnetic indices describing global geomagnetic storm activity (Kp, am, Dst and dDst/dt) and on indices designed to characterize high latitude currents and substorms (PC and AE-indices and their variants). The focus in our discussion is in main field modelling, where indices are primarily used in data selection criteria for weak magnetic activity. The publicly available extensive data bases of index values are used to derive joint conditional Probability Distribution Functions (PDFs) for different pairs of indices in order to investigate their mutual consistency in describing quiet conditions. This exercise reveals that Dst and its time derivative yield a similar picture as Kp on quiet conditions as determined with the conditions typically used in internal field modelling. Magnetic quiescence at high latitudes is typically searched with the help of Merging Electric Field (MEF) as derived from solar wind observations. We use in our PDF analysis the PC-index as a proxy for MEF and estimate the magnetic activity level at auroral latitudes with the AL-index. With these boundary conditions we conclude that the quiet time conditions that are typically used in main field modelling (\(\mathit{PC}<0.8\), \(\mathit{Kp}<2\) and \(|\mathit{Dst}|<30~\mbox{nT}\)) correspond to weak auroral electrojet activity quite well: Standard size substorms are unlikely to happen, but other types of activations (e.g. pseudo breakups \(\mathit{AL}>-300~\mbox{nT}\)) can take place, when these criteria prevail. Although AE-indices have been designed to probe electrojet activity only in average conditions and thus their performance is not optimal during weak activity, we note that careful data selection with advanced AE-variants may appear to be the most practical way to lower the elevated RMS-values which still exist in the residuals between modeled and observed values at high latitudes. Recent initiatives to upgrade the AE-indices, either with a better coverage of observing stations and improved baseline corrections (the SuperMAG concept) or with higher accuracy in pinpointing substorm activity (the Midlatitude Positive Bay-index) will most likely be helpful in these efforts.


















Similar content being viewed by others
References
B.-H. Ahn, S.-I. Akasofu, Y. Kamide, The Joule heat production rate and the particle energy injection rate as function of the geomagnetic indices AE and AL. J. Geophys. Res. 88(A8), 6275–6287 (1983). doi:10.1029/JA088iA08p06275/
J.H. Allen, H.W. Kroehl, Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices. J. Geophys. Res. 80(25), 3667–3677 (1975). doi:10.1029/ja080i025p03667
K.A. Anderson, Radial dependence of energetic electron fluxes in the tail of the Earth’s magnetic field. Phys. Rev. Lett. 14, 888–890 (1965). doi:10.1103/PhysRevLett.14.888
K.B. Baker, S. Wing, A new magnetic coordinate system for conjugate studies at high latitudes. J. Geophys. Res. 94(A7), 9139–9143 (1989). doi:10.1029/JA094iA07p09139
W. Baumjohann, Y. Kamide, Hemispherical Joule heating and the AE indices. J. Geophys. Res. 89(A1), 383–388 (1984). doi:10.1029/JA089iA01p00383
S. Chapman, An outline of a theory of magnetic storms. Proc. R. Soc. Lond., a Contain. Pap. Math. Phys. Character 95, 61–83 (1918)
X. Chu, T.-S. Hsu, R.L. McPherron, V. Angelopoulos, Z. Pu, J.J. Weygand, K. Khurana, M. Connors, J. Kissinger, H. Zhang, O. Amm, Development and validation of inversion technique for substorm current wedge using ground magnetic field data. J. Geophys. Res. 119, 1909–1924 (2014). doi:10.1002/2013JA019185
X. Chu, R.L. McPherron, T.-S. Hsu, V. Angelopoulos, Solar cycle dependence of substorm occurrence and duration: implications for onset. J. Geophys. Res. 120, 2808–2818 (2015). doi:10.1002/2015JA021104
F.K. Chun, D.J. Knipp, M.G. McHarg, G. Lu, B.A. Emery, S. Vennerström, O.A. Troshichev, Polar cap index as a proxy for hemispheric Joule heating. Geophys. Res. Lett. 26(8), 1101–1104 (1999)
C.G. Constable, Parameter estimation in non-Gaussian noise. Geophys. J. 94, 131–142 (1988). http://gji.oxfordjournals.org/content/94/1/131.full.pdf+html?sid=6cf52bd6-f6f8-4355-9607-65e16ac93b0b
T.N. Davis, M. Sugiura, Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 71(3), 785–801 (1966). doi:10.1029/jz071i003p00785
C.C. Finlay, S. Maus, C.D. Beggan, M. Hamoudi, F.J. Lowes, N. Olsen, E. Thébault, Evaluation of candidate geomagnetic field models for IGRF-11. Earth Planets Space 62(10), 787–804 (2010)
C.C. Finlay, N. Olsen, L. Tøffner-Clausen, DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planets Space 67, 114 (2015)
C.C. Finlay, V. Lesur, E. Thébault et al., Space Sci. Rev. (2016). doi:10.1007/s11214-016-0285-9
R.A.D. Fiori, A.V. Koustov, D. Boteler, R.A. Makarevich, PCN magnetic index and average convection velocity in the polar cap inferred from SuperDARN radar measurements. J. Geophys. Res. 114, 07225 (2009). doi:10.1029/2008JA013964
E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58(4), 351–358 (2006)
J. Gannon, J. Love, USGS 1-min Dst index. J. Atmos. Sol.-Terr. Phys. 73(2), 323–334 (2011)
Y. Gao, M.G. Kivelson, R.J. Walker, The linear dependence of polar cap index on its controlling factors in solar wind and magnetotail. J. Geophys. Res. 117, 05213 (2012). doi:10.1029/2011JA017229
J.W. Gjerloev, The SuperMAG data processing technique. J. Geophys. Res. 117, 09213 (2012). doi:10.1029/2012JA017683
L.V. Häkkinen, T.I. Pulkkinen, H. Nevanlinna, R.J. Pirjola, E.I. Tanskanen, Effects of induced currents on Dst and on magnetic variations at midlatitude stations. J. Geophys. Res. Space Phys. 107(A1) (2002). doi:10.1029/2001JA900130
B. Hamilton, Rapid modelling of the large-scale magnetospheric field from Swarm satellite data. Earth Planets Space 65, 1295–1308 (2013)
B. Hnat, S.C. Chapman, G. Rowlands, N.W. Watkins, M.P. Freeman, Scaling of solar wind \(\epsilon\) and the AU, AL and AE indices as seen by WIND. Geophys. Res. Lett. 29(22), 2078 (2002). doi:10.1029/2002GL016054
C.-S. Huang, Variations of polar cap index in response to solar wind changes and magnetospheric substorms. J. Geophys. Res. 110, 01203 (2005). doi:10.1029/2004JA010616
T. Iyemori, Storm-time magnetospheric currents inferred from mid-latitude geomagnetic variations. J. Geomagn. Geoelectr. 42, 1249–1265 (1990). doi:10.5636/jgg.42.1249
A. Janzhura, O. Troshichev, P. Stauning, Unified PC indices: relation to isolated magnetic substorms. J. Geophys. Res. 112, 09207 (2007). doi:10.1029/2006JA012132
L. Juusola, N. Østgaard, E. Tanskanen, N. Partamies, K. Snekvik, Earthward plasma sheet flows during substorm phases. J. Geophys. Res. 116, 10228 (2011). doi:10.1029/2011JA016852
E.I. Kallio, T.I. Pulkkinen, H.E.J. Koskinen, A. Viljanen, Loading-unloading processes in the nightside ionosphere. Geophys. Res. Lett. 27(11), 1627–1630 (2000). doi:10.1029/1999GL003694
J.R. Kan, L.C. Lee, Energy coupling function and solar wind—magnetosphere dynamo. Geophys. Res. Lett. 6(7), 557–560 (1979). doi:10.1029/GL006i007p00577
A. Karinen, K. Mursula, A new reconstruction of the Dst index for 1932–2002. Ann. Geophys. 23, 475–485 (2005)
K. Kauristie, Statistical fits for auroral oval boundaries during the substorm sequence. J. Geophys. Res. 100(A11), 21885–21895 (1995). doi:10.1029/95JA01627
K. Kauristie, T.I. Pulkkinen, R.J. Pellinen, H.J. Opgenoorth, What can we tell about global auroral electrojet activity from a single meridional magnetometer chain? Ann. Geophys. 14(11), 1177–1185 (1996)
W. Kertz, Ein neues mass für die feldstärke des erdmagnetischen äquatorialen ringstroms. Abh.-Akad. Wiss. Goettin., Math. Phys. Kl. 2, 1–83 (1958)
W. Kertz, Ring current variations during the IGY. Ann. Int. Geophys. Year 35 (1964)
M.G. Kivelson, C.T. Russell, Introduction to Space Physics (Cambridge University Press, Cambridge, 1995)
V. Lesur, I. Wardinski, M. Rother, M. Mandea, GRIMM: the GFZ reference internal magnetic model based on vector satellite and observatory data. Geophys. J. Int. 173, 382–394 (2008)
V. Lesur, I. Wardinski, M. Hamoudi, M. Rother, The second generation of the GFZ reference internal magnetic model: GRIMM-2. Earth Planets Space 62(10), 765–773 (2010)
J.V. Lincoln, Geomagnetic indices, in Physics of Geomagnetic Phenomena, ed. by S. Matsushita, W.H. Campbell. International Geophysics Series, vol. 1, 1st edn. (Academic Press, New York, 1967), pp. 67–98
K. Liou, P.T. Newell, D.G. Sibeck, C.-I. Meng, M. Brittnacher, G. Parks, Observation of IMF and seasonal effects in the location of auroral substorm onset. J. Geophys. Res. 106(A4), 5799–5810 (2001). doi:10.1029/2000JA003001
K. Liou, J.F. Carbary, P.T. Newell, C.-I. Meng, O. Rasmussen, Correlation of auroral power with the polar cap index. J. Geophys. Res. 108(A3), 1108 (2003). doi:10.1029/2002JA009556
M. Lockwood, L. Barnard, H. Nevanlinna, M.J. Owens, R.G. Harrison, A.P. Rouillard, C.J. Davis, Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr—Part 2: a new reconstruction of the interplanetary magnetic field. Ann. Geophys. 31(11), 1979–1992 (2013). doi:10.5194/angeo-31-1979-2013
R.E. Lopez, C.C. Goodrich, M. Wiltberger, K. Papadopoulos, Simulation of the March 9, 1995 substorm and initial comparison to data, in Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics Program. Geophysical Monograph, vol. 104 (1998), pp. 237–245
J. Love, J. Gannon, Revised Dst and the epicycles of magnetic disturbance: 1958–2007. Ann. Geophys. Atmos. Hidrosph. Space Sci. 27, 3101 (2009)
A.T.Y. Lui, C.D. Anger, A uniform belt of diffuse auroral emission seen by the ISIS-2 scanning photometer. Planet. Space Sci. 21(5), 799 (1973). doi:10.1016/0032-0633(73)90097-4
S. Macmillan, N. Olsen, Observatory data and the Swarm mission. Earth Planets Space 65, 1355–1362 (2013)
S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005). doi:10.1111/j.1365-246X.2005.02691.x
S. Maus, P. Weidelt, Separating the magnetospheric disturbance magnetic field into external and transient internal contributions using a 1D conductivity model of the Earth. Geophys. Res. Lett. 31, L12614 (2004). doi:10.1029/2004GL020232
S. Maus, C. Manoj, J. Rauberg, I. Michaelis, H. Lühr, NOAA/NGDC candidate models for the 11th generation international geomagnetic reference field and the concurrent release of the 6th generation Pomme magnetic model. Earth Planets Space 62(10), 729–735 (2010)
P.N. Mayaud, Une mesure planétaire dactivité magnétique basée sur deux observatoires antipodaux. Ann. Geophys. 27(1), 67–70 (1971)
P.N. Mayaud, Derivation, Meaning, and Use of Geomagnetic Indices. Geophysical Monograph, vol. 22 (Am. Geophys. Union, Washington, 1980)
H. McCreadie, M. Menvielle, The PC index: review of methods. Ann. Geophys. 28, 1887–1903 (2010). http://www.ann-geophys.net/28/1887/2010/
R.L. McPherron, Growth phase of magnetospheric substorms. J. Geophys. Res. 75(28), 5592–5599 (1970). doi:10.1029/ja075i028p05592
R.L. McPherron, Magnetospheric substorms. Rev. Geophys. 17(4), 657 (1979). doi:10.1029/rg017i004p00657
R.L. McPherron, Earth’s magnetotail, in Magnetotails in the Solar System, ed. by A. Keiling, C.M. Jackman, P.A. Delamere. Geophysica Monograph, vol. 207 (Am. Geophys. Union, Washington, 2015), pp. 61–84
M. Menvielle, A. Berthelier, The K-derived planetary indices: description and availability. Rev. Geophys. 3(29), 415–432 (1991)
M. Menvielle, T. Iyemori, A. Marchaudon, M. Nosé, Geomagnetic indices, in Geomagnetic Observations and Models (Springer, Dordrecht, 2010), pp. 183–228
K. Mursula, A. Karinen, Explaining and correcting the excessive semiannual variation in the Dst index. Geophys. Res. Lett. 32(14) (2005). doi:10.1029/2005GL023132
H. Nevanlinna, E. Kataja, An extension of the geomagnetic activity index series aa for two solar cycles (1844–1868). Geophys. Res. Lett. 20(23), 2703–2706 (1993). doi:10.1029/93gl03001
P.T. Newell, J.W. Gjerloev, Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 116, 12211 (2011a). doi:10.1029/2011JA016779
P.T. Newell, J.W. Gjerloev, Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. J. Geophys. Res. 116, 12232 (2011b). doi:10.1029/2011JA016936
P.T. Newell, J.W. Gjerloev, SuperMAG-based partial ring current indices. J. Geophys. Res. 117, 05215 (2012). doi:10.1029/2012JA017586
P.T. Newell, J.W. Gjerloev, Local geomagnetic indices and the prediction of auroral power. J. Geophys. Res. 119, 9790–9803 (2014). doi:10.1002/2014JA020524
P.T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, F.J. Rich, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 112(A1), 01206 (2007). doi:10.1029/2006JA012015
N. Olsen, F. Lowes, T.J. Sabaka, Ionospheric and induced field leakage in geomagnetic field models, and derivation of candidate models for DGRF 1995 and DGRF 2000. Earth Planets Space 57, 1191–1196 (2005a)
N. Olsen, T.J. Sabaka, F. Lowes, New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005. Earth Planets Space 57, 1141–1149 (2005b)
N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Toffner-Clausen, S. Choi, CHAOS—a model of the Earth’s magnetic field derived from CHAMP, /Orsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006)
N. Olsen, M. Mandea, T.J. Sabaka, L. Toffner-Clausen, The CHAOS-3 geomagnetic field model and candidates for the 11th generation IGRF. Earth Planets Space 62(10), 719–727 (2010)
N. Olsen, H. Lühr, C.C. Finlay, T.J. Sabaka, I. Michaelis, J. Rauberg, L. Toffner-Clausen, The CHAOS-4 geomagnetic field model. Geophys. J. Int. 197, 815–827 (2014). doi:10.1093/gji/ggu033
N. Olsen, G. Hulot, V. Lesur, C.C. Finlay, C. Beggan, A. Chulliat, T.J. Sabaka, R. Floberghagen, E. Friis-Christensen, R. Haagmans, S. Kotsiaros, H. Lühr, L. Toffner-Clausen, P. Vigneron, The Swarm initial field model for the 2014 geomagnetic field. Geophys. Res. Lett. 42, 1092–1098 (2015). doi:10.1002/2014GL062659
H.J. Opgenoorth, M.A.L. Persson, M. Lockwood, R. Stamper, M.N. Wild, R. Pellinen, T. Pulkkinen, K. Kauristie, T. Hughes, Y. Kamide, A new family of geomagnetic disturbance indices, in Ground-Based Observations in Support of the Cluster Mission, ed. by M. Lockwood, M.N. Wild, H.J. Opgenoorth. ESA Publications, vol. SP-1198 (ESTEC, Noordwijk, 1997), pp. 49–62
N. Østgaard, R.R. Vondrak, J.W. Gjerloev, G. Germany, A relation between the energy deposition by electron precipitation and geomagnetic indices during substorms. J. Geophys. Res. 107(A9), 1246 (2002). doi:10.1029/2001JA002003
N. Partamies, L. Juusola, E. Tanskanen, K. Kauristie, Statistical properties of substorms during different storm and solar cycle phases. Ann. Geophys. 31(2), 349–358 (2013). doi:10.5194/angeo-31-349-2013
A. Pulkkinen, A. Klimas, D. Vassiliadis, V. Uritsky, Role of stochastic fluctuations in the magnetosphere-ionosphere system: a stochastic model for the AE index variations. J. Geophys. Res. 111, 10218 (2006). doi:10.1029/2006JA011661
A.D. Richmond, Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 47, 191–212 (1995)
A.J. Ridley, E.A. Kihn, Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area. Geophys. Res. Lett. 31, 07801 (2004). doi:10.1029/2003GL019113
P. Ritter, H. Lühr, S. Maus, A. Viljanen, High-latitude ionospheric currents during very quiet times: their characteristics and predictability. Ann. Geophys. 22, 2001–2014 (2004)
G. Rostoker, T.D. Phan, Variation of auroral electrojet spatial location as a function of the level of magnetospheric activity. J. Geophys. Res. 91(A2), 1716–1722 (1986). doi:10.1029/JA091iA02p01716
G. Rostoker, J.C. Samson, F. Creutzberger, T.J. Hughes, D.R. McDiarmid, A.G. McNamara, A. Vallance-Jones, D.D. Wallis, CANOPUS—a ground-based instrument array for remote sensing the high latitude ionosphere during the ISTP/GGS program. Space Sci. Rev. 71, 743–760 (1995)
T.J. Sabaka, N. Olsen, R.H. Tyler, A. Kuvshinov, CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, /Orsted, SAC-C and observatory data. Geophys. J. Int. 200, 1596–1626 (2015). doi:10.1093/gji/ggu493
M. Siebert, J. Meyer, Geomagnetic activity indices, in The Upper Atmosphere, ed. by W. Dieminger, G.K. Hartman, R. Leitinger (Springer, Berlin, 1996), pp. 887–911
R.W. Spiro, P.H. Reiff, L.J. Maher Jr., Precipitating electron energy flux and auroral zone conductances—an empirical model. J. Geophys. Res. 87(A10), 8215–8227 (1982). doi:10.1029/JA087iA10p08215
P. Stauning, A new index for the interplanetary merging field and geomagnetic activity: application of the unified polar cap indices. Space Weather 5, 09001 (2007). doi:10.1029/2007SW000311
P. Stauning, Comment on “The PC index: review of methods”, by McCreadie and Menvielle (2010). Ann. Geophys. 29, 1137–1146 (2011). doi:10.5194/angeo-29-1137-2011
P. Stauning, The polar cap index: a critical review of methods and a new approach. J. Geophys. Res. 118, 5021–5038 (2013). doi:10.1029/jgra.50462
M. Sugiura, IAGA resolution 2. IAGA Bull. 27, 123 (1969)
M. Sugiura, T. Kamei, Equatorial \(D_{\mathit{st}}\)-index 1957–1986, in IAGA Bulletin No. 40, ed. by A. Berthelier, M. Menvielle (ISGI Publ. Off., Saint. Maur-des-Fosses, 1991)
L. Svalgaard, Rederivation of Dst index, in AGU Fall Meeting Abstracts, vol. 1 (2005), p. 04
L. Svalgaard, Geomagnetic semiannual variation is not overestimated and is not an artifact of systematic solar hemispheric asymmetry. Geophys. Res. Lett. 38(16) (2011). doi:10.1029/2011GL048616
L. Svalgaard, Correction of errors in scale values for magnetic elements for Helsinki. Ann. Geophys. 32(6), 633–641 (2014). doi:10.5194/angeo-32-633-2014
J. Takalo, J. Timonen, H. Koskinen, Correlation dimension and affinity of AE data and bicolored noise. Geophys. Res. Lett. 20(15), 1527–1530 (1993). doi:10.1029/93GL01596
E.I. Tanskanen, A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: years 1993–2003 examined. J. Geophys. Res. 114, 05204 (2009). doi:10.1029/2008JA013682
E.I. Tanskanen, A. Viljanen, T.I. Pulkkinen, R. Pirjola, L. Häkkinen, A. Pulkkinen, O. Amm, At substorm onset, 40 % of AL comes from underground. J. Geophys. Res. 106(A7), 13119 (2001). doi:10.1029/2000JA900135
M. Temerin, X. Li, The Dst index underestimates the solar cycle variation of geomagnetic activity. J. Geophys. Res. Space Phys. 120(7), 5603–5607 (2015)
E. Thébault, C.C. Finlay, P. Alken, C.D. Beggan, E. Canet, A. Chulliat, B. Langlais, V. Lesur, F.J. Lowes, C. Manoj, M. Rother, R. Schachtschneider, Evaluation of candidate geomagnetic field models for IGRF-12. Earth Planets Space 67, 112 (2015). doi:10.1186/s40623-015-0273-4
A.W.P. Thomson, V. Lesur, An improved geomagnetic data selection algorithm for global geomagnetic field modelling. Geophys. J. Int. 169(3), 951–963 (2007)
O.A. Troshichev, V.G. Andrezen, The relationship between interplanetary quantities and magnetic activity in the southern polar cap. Planet. Space Sci. 33(4), 415–419 (1985). doi:10.1016/0032-0633(85)90086-8
O.A. Troshichev, V.G. Andrezen, S. Vennerström, E. Friis-Christensen, Magnetic activity in the polar cap—a new index. Planet. Space Sci. 36(11), 1095–1102 (1988). doi:10.1016/0032-0633(88)90063-3
O. Troshichev, H. Hayakawa, A. Matsuoka, T. Mukai, K. Tsuruda, Cross polar cap diameter and voltage as a function of PC index and interplanetary quantities. J. Geophys. Res. 101(A6), 13429–13435 (1996). doi:10.1029/95JA03672
O.A. Troshichev, R.Y. Lukianova, V.O. Papitashvili, F.J. Rich, O. Rasmussen, Polar cap index (PC) as a proxy for ionospheric electric field in the near-pole region. Geophys. Res. Lett. 27(23), 3809–3812 (2000)
O. Troshichev, A. Janzhura, P. Stauning, Unified PCN and PCS indices: method of calculation, physical sense, and dependence on the imf azimuthal and northward components. J. Geophys. Res. 111, 05208 (2006). doi:10.1029/2005JA011402
B. Tsurutani, M. Sugiura, T. Iyemori, B.E. Goldstein, W.D. Gonzalez, S.I. Akasofu, E.J. Smith, The nonlinear response of AE to the IMF BS driver: a spectral break at 5 hours. Geophys. Res. Lett. 17(3), 279–282 (1990). doi:10.1029/GL017i003p00279
N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry, 2, parameterization and fitting to observations. J. Geophys. Res. 107(A8), 10–11017 (2002). doi:10.1029/2001JA000220
S. Vennerstrøm, E. Friis-Christensen, O.A. Troshichev, V.G. Andresen, Comparison between the polar cap index, PC, and the auroral electrojet indices, AE, AL, and AU. J. Geophys. Res. 96, 101–113 (1991)
S. Vennerström, E. Friis-Christensen, O.A. Troshichev, V.G. Andrezen, Geomagnetic polar cap (PC) index 1975–1993, Rep. UAG-103 (World Data Center A, Boulder, Colorado, 1994)
A. Viljanen, L. Häkkinen, IMAGE magnetometer network, in Ground-Based Observations in Support of the Cluster Mission, ed. by M. Lockwood, M.N. Wild, H.J. Opgenoorth. ESA Publications, vol. SP-1198 (ESTEC, Noordwijk, 1997), pp. 111–117
J.A. Wanliss, K.M. Showalter, High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. Space Phys. 111(A2), A02202 (2006)
Acknowledgements
The authors are very grateful to the International Space Science Institute for inviting them to take part in the Workshop on “Earth’s Magnetic Field” held in Bern in May 2015. The \(\mathit{IE}\)-indices of Svalbard magnetometer stations were prepared and provided by Liisa Juusola, Max Van de Kamp (FMI) and Noora Partamies (UNIS). Discussions about the Kp procedure have been conducted with Lasse Häkkinen and Ari Viljanen (FMI). TGO/University of Tromsø is acknowledged for maintaining the Svalbard stations. The Referees are acknowledged particularly for their fascinating ideas on future work under the topic of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kauristie, K., Morschhauser, A., Olsen, N. et al. On the Usage of Geomagnetic Indices for Data Selection in Internal Field Modelling. Space Sci Rev 206, 61–90 (2017). https://doi.org/10.1007/s11214-016-0301-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-016-0301-0