[go: up one dir, main page]

Skip to main content
Log in

Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Circumstellar disks have long been regarded as windows into planetary systems. The advent of high sensitivity, high resolution imaging in the submillimeter where both the solid and gas components of disks can be detected opens up new possibilities for understanding the dynamical histories of these systems and therefore, a better ability to place our own solar system, which hosts a highly evolved debris disk, in context. Comparisons of dust masses from protoplanetary and debris disks have revealed a stark downturn in mass in millimeter-sized grains around a stellar age of 10 Myr, ostensibly in the “transition disk” phase, suggesting a period of rapid accretion of such grains onto planetesimals. This rapid formation phase is in keeping with radionucleide studies of Kuiper Belt Objects in the solar system. Importantly, this suggests that any thermal gradients in the gas of disks of this era will be “frozen in” to the planetesimals as they rapidly accrete from the solids and ices in their vicinity. Measurements of radial gradients in thermal tracers such as DHO, DCN and other tracers can therefore provide insight into the nascent solar system’s abundances. In studies of dynamical evolution of the solar system, it is tacitly assumed that such abundances can reveal the location of formation for bodies now found in the asteroid belt and Kuiper belt. Similarly, evidence of gas detected from collisional evolution in young debris disks could potentially reveal how rapidly objects have dynamically evolved in those systems, most of which will be significantly younger than the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • J. Agarwal, D. Jewitt, H. Weaver, Dynamics of large fragments in the tail of active asteroid P/2010 A2. Astrophys. J. 769, 46 (2013). doi:10.1088/0004-637X/769/1/46

    Article  ADS  Google Scholar 

  • T. Albertsson, D. Semenov, T. Henning, Chemodynamical deuterium fractionation in the early solar nebula: the origin of water on Earth and in asteroids and comets. Astrophys. J. 784, 39 (2014). doi:10.1088/0004-637X/784/1/39

    Article  ADS  Google Scholar 

  • L.J. Allamandola, S.A. Sandford, G.J. Valero, Photochemical and thermal evolution of interstellar/precometary ice analogs. Icarus 76, 225–252 (1988). doi:10.1016/0019-1035(88)90070-X

    Article  ADS  Google Scholar 

  • ALMA Partnership, C.L. Brogan, L.M. Pérez, T.R. Hunter, W.R.F. Dent, A.S. Hales, R.E. Hills, S. Corder, E.B. Fomalont, C. Vlahakis, Y. Asaki, D. Barkats, A. Hirota, J.A. Hodge, C.M.V. Impellizzeri, R. Kneissl, E. Liuzzo, R. Lucas, N. Marcelino, S. Matsushita, K. Nakanishi, N. Phillips, A.M.S. Richards, I. Toledo, R. Aladro, D. Broguiere, J.R. Cortes, P.C. Cortes, D. Espada, F. Galarza, D. Garcia-Appadoo, L. Guzman-Ramirez, E.M. Humphreys, T. Jung, S. Kameno, R.A. Laing, S. Leon, G. Marconi, A. Mignano, B. Nikolic, L.-A. Nyman, M. Radiszcz, A. Remijan, J.A. Rodón, T. Sawada, S. Takahashi, R.P.J. Tilanus, B. Vila Vilaro, L.C. Watson, T. Wiklind, E. Akiyama, E. Chapillon, I. de Gregorio-Monsalvo, J. Di Francesco, F. Gueth, A. Kawamura, C.-F. Lee, Q. Nguyen Luong, J. Mangum, V. Pietu, P. Sanhueza, K. Saigo, S. Takakuwa, C. Ubach, T. van Kempen, A. Wootten, A. Castro-Carrizo, H. Francke, J. Gallardo, J. Garcia, S. Gonzalez, T. Hill, T. Kaminski, Y. Kurono, H.-Y. Liu, C. Lopez, F. Morales, K. Plarre, G. Schieven, L. Testi, L. Videla, E. Villard, P. Andreani, J.E. Hibbard, K. Tatematsu, The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. Lett. 808, 3 (2015). doi:10.1088/2041-8205/808/1/L3

    Article  ADS  Google Scholar 

  • K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. LeRoy, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, H. Waite, P. Wurz, 67P/Churyumov–Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(27), 1261952 (2015). doi:10.1126/science.1261952

    Article  Google Scholar 

  • S.M. Andrews, D.J. Wilner, A.M. Hughes, C. Qi, K.A. Rosenfeld, K.I. Öberg, T. Birnstiel, C. Espaillat, L.A. Cieza, J.P. Williams, S.-Y. Lin, P.T.P. Ho, The TW Hya disk at 870 μm: comparison of CO and dust radial structures. Astrophys. J. 744, 162 (2012). doi:10.1088/0004-637X/744/2/162

    Article  ADS  Google Scholar 

  • J.-C. Augereau, H. Beust, On the AU microscopii debris disk. Density profiles, grain properties, and dust dynamics. Astron. Astrophys. 455, 987–999 (2006). doi:10.1051/0004-6361:20054250

    Article  ADS  Google Scholar 

  • M.T. Bannister, J.J. Kavelaars, J.-M. Petit, The outer solar system origins survey. I: design and first-quarter discoveries. Astron. J. (2015, submitted)

  • M.T. Bannister, Mapping the deep: discovery surveys in the outer Solar System. Planet. Space Sci. (2016, in press)

  • S.D. Barber, A.J. Patterson, M. Kilic, S.K. Leggett, P. Dufour, J.S. Bloom, D.L. Starr, The frequency of debris disks at white dwarfs. Astrophys. J. 760, 26 (2012). doi:10.1088/0004-637X/760/1/26

    Article  ADS  Google Scholar 

  • E.A. Bergin, L.I. Cleeves, U. Gorti, K. Zhang, G.A. Blake, J.D. Green, S.M. Andrews, N.J. Evans II, T. Henning, K. Öberg, K. Pontoppidan, C. Qi, C. Salyk, E.F. van Dishoeck, An old disk still capable of forming a planetary system. Nature 493, 644–646 (2013). doi:10.1038/nature11805

    Article  ADS  Google Scholar 

  • G.M. Bernstein, D.E. Trilling, R.L. Allen, M.E. Brown, M. Holman, R. Malhotra, The size distribution of trans-Neptunian bodies. Astron. J. 128, 1364–1390 (2004). doi:10.1086/422919

    Article  ADS  Google Scholar 

  • J. Blum, G. Wurm, The growth mechanisms of macroscopic bodies in protoplanetary disks. Annu. Rev. Astron. Astrophys. 46, 21–56 (2008). doi:10.1146/annurev.astro.46.060407.145152

    Article  ADS  Google Scholar 

  • A. Bonsor, G.M. Kennedy, J.R. Crepp, J.A. Johnson, M.C. Wyatt, B. Sibthorpe, K.Y.L. Su, Spatially resolved images of dust belt(s) around the planet-hosting subgiant \(\kappa\) CrB. Mon. Not. R. Astron. Soc. 431, 3025–3035 (2013). doi:10.1093/mnras/stt367

    ADS  Google Scholar 

  • A. Bonsor, G.M. Kennedy, M.C. Wyatt, J.A. Johnson, B. Sibthorpe, Herschel observations of debris discs orbiting planet-hosting subgiants. Mon. Not. R. Astron. Soc. 437, 3288–3297 (2014). doi:10.1093/mnras/stt2128

    ADS  Google Scholar 

  • M. Booth, M.C. Wyatt, A. Morbidelli, A. Moro-Martín, H.F. Levison, The history of the Solar system’s debris disc: observable properties of the Kuiper belt. Mon. Not. R. Astron. Soc. 399, 385–398 (2009). doi:10.1111/j.1365-2966.2009.15286.x

    ADS  Google Scholar 

  • R. Brasser, M.J. Duncan, H.F. Levison, Embedded star clusters and the formation of the Oort cloud. II. The effect of the primordial solar nebula. Icarus 191, 413–433 (2007). doi:10.1016/j.icarus.2007.05.003

    Article  ADS  Google Scholar 

  • D. Carrera, A. Johansen, M.B. Davies, How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astron. Astrophys. 579, 43 (2015). doi:10.1051/0004-6361/201425120

    Article  ADS  Google Scholar 

  • S. Casassus, G. van der Plas, S.P. M, W.R.F. Dent, E. Fomalont, J. Hagelberg, A. Hales, A. Jordán, D. Mawet, F. Ménard, A. Wootten, D. Wilner, A.M. Hughes, M.R. Schreiber, J.H. Girard, B. Ercolano, H. Canovas, P.E. Román, V. Salinas, Flows of gas through a protoplanetary gap. Nature 493, 191–194 (2013). doi:10.1038/nature11769

    Article  ADS  Google Scholar 

  • W.R.F. Dent, J.S. Greaves, I.M. Coulson, CO emission from discs around isolated HAeBe and Vega-excess stars. Mon. Not. R. Astron. Soc. 359, 663–676 (2005). doi:10.1111/j.1365-2966.2005.08938.x

    ADS  Google Scholar 

  • W.R.F. Dent, M.C. Wyatt, A. Roberge, J.-C. Augereau, S. Casassus, S. Corder, J.S. Greaves, I. de Gregorio-Monsalvo, A. Hales, A.P. Jackson, A.M. Hughes, A.-M. Lagrange, B. Matthews, D. Wilner, Molecular gas clumps from the destruction of icy bodies in the \(\beta\) Pictoris debris disk. Science 343, 1490–1492 (2014). doi:10.1126/science.1248726

    Article  ADS  Google Scholar 

  • P. Dufour, M. Kilic, G. Fontaine, P. Bergeron, C. Melis, J. Bochanski, Detailed compositional analysis of the heavily polluted DBZ white dwarf SDSS J073842.56+183509.06: a window on planet formation? Astrophys. J. 749, 6 (2012). doi:10.1088/0004-637X/749/1/6

    Article  ADS  Google Scholar 

  • C.P. Dullemond, C. Dominik, Dust coagulation in protoplanetary disks: a rapid depletion of small grains. Astron. Astrophys. 434, 971–986 (2005). doi:10.1051/0004-6361:20042080

    Article  ADS  MATH  Google Scholar 

  • N. Dzyurkevich, N.J. Turner, T. Henning, W. Kley, Magnetized accretion and dead zones in protostellar disks. Astrophys. J. 765, 114 (2013). doi:10.1088/0004-637X/765/2/114

    Article  ADS  Google Scholar 

  • C. Eiroa, J.P. Marshall, A. Mora, B. Montesinos, O. Absil, J.C. Augereau, A. Bayo, G. Bryden, W. Danchi, C. del Burgo, S. Ertel, M. Fridlund, A.M. Heras, A.V. Krivov, R. Launhardt, R. Liseau, T. Löhne, J. Maldonado, G.L. Pilbratt, A. Roberge, J. Rodmann, J. Sanz-Forcada, E. Solano, K. Stapelfeldt, P. Thébault, S. Wolf, D. Ardila, M. Arévalo, C. Beichmann, V. Faramaz, B.M. González-García, R. Gutiérrez, J. Lebreton, R. Martínez-Arnáiz, G. Meeus, D. Montes, G. Olofsson, K.Y.L. Su, G.J. White, D. Barrado, M. Fukagawa, E. Grün, I. Kamp, R. Lorente, A. Morbidelli, S. Müller, H. Mutschke, T. Nakagawa, I. Ribas, H. Walker, DUst around NEarby stars. The survey observational results. Astron. Astrophys. 555, 11 (2013). doi:10.1051/0004-6361/201321050

    Article  ADS  Google Scholar 

  • C. Espaillat, J. Muzerolle, J. Najita, S. Andrews, Z. Zhu, N. Calvet, S. Kraus, J. Hashimoto, A. Kraus, P. D’Alessio, An observational perspective of transitional disks, in Protostars and Planets VI (2014), pp. 497–520 doi:10.2458/azu_uapress_9780816531240-ch022

    Google Scholar 

  • K. France, A. Roberge, R.E. Lupu, S. Redfield, P.D. Feldman, A low-mass \(\mathrm{H}_{2}\) component to the AU microscopii circumstellar disk. Astrophys. J. 668, 1174–1181 (2007). doi:10.1086/521348

    Article  ADS  Google Scholar 

  • W.C. Fraser, M.E. Brown, The Hubble wide field camera 3 test of surfaces in the Outer Solar system: the compositional classes of the Kuiper belt. Astrophys. J. 749, 33 (2012). doi:10.1088/0004-637X/749/1/33

    Article  ADS  Google Scholar 

  • W.C. Fraser, M.E. Brown, M.E. Schwamb, The luminosity function of the hot and cold Kuiper belt populations. Icarus 210, 944–955 (2010). doi:10.1016/j.icarus.2010.08.001

    Article  ADS  Google Scholar 

  • C.I. Fuentes, M.J. Holman, D.E. Trilling, P. Protopapas, Trans-Neptunian objects with Hubble Space Telescope ACS/WFC. Astrophys. J. 722, 1290–1302 (2010). doi:10.1088/0004-637X/722/2/1290

    Article  ADS  Google Scholar 

  • M. Fukagawa, T. Tsukagoshi, M. Momose, K. Saigo, N. Ohashi, Y. Kitamura, S.-I. Inutsuka, T. Muto, H. Nomura, T. Takeuchi, H. Kobayashi, T. Hanawa, E. Akiyama, M. Honda, H. Fujiwara, A. Kataoka, S.Z. Takahashi, H. Shibai, Local enhancement of the surface density in the protoplanetary ring surrounding HD 142527. Publ. Astron. Soc. Jpn. 65, 14 (2013). doi:10.1093/pasj/65.6.L14

    Article  ADS  Google Scholar 

  • B. Gladman, S.M. Lawler, J.-M. Petit, J. Kavelaars, R.L. Jones, J.W. Parker, C. Van Laerhoven, P. Nicholson, P. Rousselot, A. Bieryla, M.L.N. Ashby, The resonant trans-Neptunian populations. Astron. J. 144, 23 (2012). doi:10.1088/0004-6256/144/1/23

    Article  ADS  Google Scholar 

  • W.M. Grundy, K.S. Noll, M.W. Buie, S.D. Benecchi, H.G. Roe, S.B. Porter, F. Nimmo, J.A. Stansberry, D.C. Stephens, H.F. Levison, Transneptunian binaries: statistics of orbital properties, in AAS/Division for Planetary Sciences Meeting Abstracts #42. Bulletin of the American Astronomical Society, vol. 42 (2010), p. 991

    Google Scholar 

  • K.E. Haisch Jr., E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. Astrophys. J. Lett. 553, 153–156 (2001). doi:10.1086/320685

    Article  ADS  Google Scholar 

  • A.M. Hughes, D.J. Wilner, I. Kamp, M.R. Hogerheijde, A resolved molecular gas disk around the nearby a star 49 Ceti. Astrophys. J. 681, 626–635 (2008). doi:10.1086/588520

    Article  ADS  Google Scholar 

  • D. Jewitt, H. Hsieh, J. Agarwal, The active asteroids. ArXiv e-prints (2015)

  • A. Johansen, J.S. Oishi, M.-M. Mac Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007). doi:10.1038/nature06086

    Article  ADS  Google Scholar 

  • J.K. Jørgensen, E.F. van Dishoeck, The \(\mbox{HDO/H}_{2}\mbox{O}\) ratio in gas in the inner regions of a low-mass protostar. Astrophys. J. Lett. 725, 172–175 (2010). doi:10.1088/2041-8205/725/2/L172

    Article  ADS  Google Scholar 

  • J.J. Kavelaars, R.L. Jones, B.J. Gladman, J.-M. Petit, J.W. Parker, C. Van Laerhoven, P. Nicholson, P. Rousselot, H. Scholl, O. Mousis, B. Marsden, P. Benavidez, A. Bieryla, A. Campo Bagatin, A. Doressoundiram, J.L. Margot, I. Murray, C. Veillet, The Canada–France ecliptic plane survey–L3 data release: the orbital structure of the Kuiper belt. Astron. J. 137, 4917–4935 (2009). doi:10.1088/0004-6256/137/6/4917

    Article  ADS  Google Scholar 

  • J.J. Kavelaars, O. Mousis, J.-M. Petit, H.A. Weaver, On the formation location of Uranus and Neptune as constrained by dynamical and chemical models of comets. Astrophys. J. Lett. 734, 30 (2011). doi:10.1088/2041-8205/734/2/L30

    Article  ADS  Google Scholar 

  • G.M. Kennedy, M.C. Wyatt, The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability. Mon. Not. R. Astron. Soc. 433, 2334–2356 (2013). doi:10.1093/mnras/stt900

    ADS  Google Scholar 

  • M. Kilic, S. Redfield, A dusty disk around WD 1150-153: explaining the metals in white dwarfs by accretion from the interstellar medium versus debris disks. Astrophys. J. 660, 641–650 (2007). doi:10.1086/513008

    Article  ADS  Google Scholar 

  • D.W. Koerner, M.E. Ressler, M.W. Werner, D.E. Backman, Mid-infrared imaging of a circumstellar disk around HR 4796: mapping the debris of planetary formation. Astrophys. J. Lett. 503, 83–87 (1998). doi:10.1086/311525

    Article  ADS  Google Scholar 

  • Á. Kóspál, A. Moór, A. Juhász, P. Ábrahám, D. Apai, T. Csengeri, C.A. Grady, T. Henning, A.M. Hughes, C. Kiss, I. Pascucci, M. Schmalzl, ALMA observations of the molecular gas in the debris disk of the 30 Myr old star HD 21997. Astrophys. J. 776, 77 (2013). doi:10.1088/0004-637X/776/2/77

    Article  ADS  Google Scholar 

  • A.V. Krivov, C. Eiroa, T. Löhne, J.P. Marshall, B. Montesinos, C. del Burgo, O. Absil, D. Ardila, J.-C. Augereau, A. Bayo, G. Bryden, W. Danchi, S. Ertel, J. Lebreton, R. Liseau, A. Mora, A.J. Mustill, H. Mutschke, R. Neuhäuser, G.L. Pilbratt, A. Roberge, T.O.B. Schmidt, K.R. Stapelfeldt, P. Thébault, C. Vitense, G.J. White, S. Wolf, Herschel’s “cold debris disks”: background galaxies or quiescent rims of planetary systems? Astrophys. J. 772, 32 (2013). doi:10.1088/0004-637X/772/1/32

    Article  ADS  Google Scholar 

  • S.M. Lawler, The debiased Kuiper belt: our Solar System as a debris disk, in IAU Symposium, ed. by M. Booth, B.C. Matthews, J.R. Graham IAU Symposium, vol. 299, 2014, pp. 232–236. doi:10.1017/S1743921313008466

    Google Scholar 

  • H.F. Levison, A. Morbidelli, The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration. Nature 426, 419–421 (2003)

    Article  ADS  Google Scholar 

  • R. Malhotra, The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993). doi:10.1038/365819a0

    Article  ADS  Google Scholar 

  • J.P. Marshall, A. Moro-Martín, C. Eiroa, G. Kennedy, A. Mora, B. Sibthorpe, J.-F. Lestrade, J. Maldonado, J. Sanz-Forcada, M.C. Wyatt, B. Matthews, J. Horner, B. Montesinos, G. Bryden, C. del Burgo, J.S. Greaves, R.J. Ivison, G. Meeus, G. Olofsson, G.L. Pilbratt, G.J. White, Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel. Astron. Astrophys. 565, 15 (2014). doi:10.1051/0004-6361/201323058

    Article  ADS  Google Scholar 

  • B.C. Matthews, P.G. Kalas, M.C. Wyatt, Mass and temperature of the TWA 7 debris disk. Astrophys. J. 663, 1103–1109 (2007). doi:10.1086/518643

    Article  ADS  Google Scholar 

  • B.C. Matthews, A.V. Krivov, M.C. Wyatt, G. Bryden, C. Eiroa, Observations, modeling, and theory of debris disks, in Protostars and Planets VI, (2014), pp. 521–544. doi:10.2458/azu_uapress_9780816531240-ch023

    Google Scholar 

  • C. Melis, B. Zuckerman, J.H. Rhee, I. Song, S.J. Murphy, M.S. Bessell, Copious amounts of hot and cold dust orbiting the main sequence A-type stars HD 131488 and HD 121191. Astrophys. J. 778, 12 (2013). doi:10.1088/0004-637X/778/1/12

    Article  ADS  Google Scholar 

  • H.Y.A. Meng, K.Y.L. Su, G.H. Rieke, D.J. Stevenson, P. Plavchan, W. Rujopakarn, C.M. Lisse, S. Poshyachinda, D.E. Reichart, Large impacts around a solar-analog star in the era of terrestrial planet formation. Science 345, 1032–1035 (2014). doi:10.1126/science.1255153

    Article  ADS  Google Scholar 

  • A. Moór, A. Juhász, Á. Kóspál, P. Ábrahám, D. Apai, T. Csengeri, C. Grady, T. Henning, A.M. Hughes, C. Kiss, I. Pascucci, M. Schmalzl, K. Gabányi, ALMA continuum observations of a 30 Myr old gaseous debris disk around HD 21997. Astrophys. J. Lett. 777, 25 (2013). doi:10.1088/2041-8205/777/2/L25

    Article  ADS  Google Scholar 

  • A. Moro-Martín, J.P. Marshall, G. Kennedy, B. Sibthorpe, B.C. Matthews, C. Eiroa, M.C. Wyatt, J.-F. Lestrade, J. Maldonado, D. Rodriguez, J.S. Greaves, B. Montesinos, A. Mora, M. Booth, G. Duchêne, D. Wilner, J. Horner, Does the presence of planets affect the frequency and properties of extrasolar Kuiper belts? Results from the Herschel debris and Dunes surveys. Astrophys. J. 801, 143 (2015). doi:10.1088/0004-637X/801/2/143

    Article  ADS  Google Scholar 

  • O. Mousis, D. Gautier, D. Bockelée-Morvan, F. Robert, B. Dubrulle, A. Drouart, Constraints on the formation of comets from D/H ratios measured in \(\mathrm{H}_{2}\mathrm{O}\) and HCN. Icarus 148, 513–525 (2000). doi:10.1006/icar.2000.6499

    Article  ADS  Google Scholar 

  • M.J. Mumma, M.A. Disanti, N. dello Russo, M. Fomenkova, K. Magee-Sauer, C.D. Kaminski, D.X. Xie, Detection of abundant ethane and methane, along with carbon monoxide and water, in comet C/1996 B2 Hyakutake: evidence for interstellar origin. Science 272, 1310–1314 (1996). doi:10.1126/science.272.5266.1310

    Article  ADS  Google Scholar 

  • D. Nesvorny, Jumping Neptune can explain the Kuiper belt kernel. ArXiv e-prints (2015a)

  • D. Nesvorny, The evidence for slow migration of Neptune from the inclination distribution of Kuiper belt objects. ArXiv e-prints (2015b)

  • D. Nesvornỳ, P. Jenniskens, H.F. Levison, W.F. Bottke, D. Vokrouhlickỳ, M. Gounelle, Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713(2), 816 (2010)

    Article  ADS  Google Scholar 

  • K.S. Noll, A.H. Parker, W.M. Grundy, All bright cold classical KBOs are binary, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46, (2014), 507.05

    Google Scholar 

  • K.I. Öberg, R. Murray-Clay, E.A. Bergin, The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. Lett. 743, 16 (2011). doi:10.1088/2041-8205/743/1/L16

    Article  ADS  Google Scholar 

  • K.I. Öberg, C. Qi, D.J. Wilner, M.R. Hogerheijde, Evidence for multiple pathways to deuterium enhancements in protoplanetary disks. Astrophys. J. 749, 162 (2012). doi:10.1088/0004-637X/749/2/162

    Article  ADS  Google Scholar 

  • D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.M. Mandell, Water delivery and giant impacts in the Grand Tack scenario. Icarus 239, 74–84 (2014). doi:10.1016/j.icarus.2014.05.009

    Article  ADS  Google Scholar 

  • O. Panić, W.S. Holland, M.C. Wyatt, G.M. Kennedy, B.C. Matthews, J.F. Lestrade, B. Sibthorpe, J.S. Greaves, J.P. Marshall, N.M. Phillips, J. Tottle, First results of the SONS survey: submillimeter detections of debris discs. Mon. Not. R. Astron. Soc. 435, 1037–1046 (2013). doi:10.1093/mnras/stt1293

    ADS  Google Scholar 

  • A.H. Parker, J.J. Kavelaars, Collisional evolution of ultra-wide trans-Neptunian binaries. Astrophys. J. 744, 139 (2012). doi:10.1088/0004-637X/744/2/139

    Article  ADS  Google Scholar 

  • N. Peixinho, A. Delsanti, A. Doressoundiram, Reanalyzing the visible colors of Centaurs and KBOs: what is there and what we might be missing. Astron. Astrophys. 577, 35 (2015). doi:10.1051/0004-6361/201425436

    Article  ADS  Google Scholar 

  • L.M. Pérez, A. Isella, J.M. Carpenter, C.J. Chandler, Large-scale asymmetries in the transitional disks of SAO 206462 and SR 21. Astrophys. J. Lett. 783, 13 (2014). doi:10.1088/2041-8205/783/1/L13

    Article  ADS  Google Scholar 

  • J.-M. Petit, J.J. Kavelaars, B.J. Gladman, R.L. Jones, J.W. Parker, C. Van Laerhoven, P. Nicholson, G. Mars, P. Rousselot, O. Mousis, B. Marsden, A. Bieryla, M. Taylor, M.L.N. Ashby, P. Benavidez, A. Campo Bagatin, G. Bernabeu, The Canada–France ecliptic plane survey–full data release: the orbital structure of the Kuiper belt. Astron. J. 142, 131 (2011). doi:10.1088/0004-6256/142/4/131

    Article  ADS  Google Scholar 

  • J.E. Pineda, S.P. Quanz, F. Meru, G.D. Mulders, M.R. Meyer, O. Panić, H. Avenhaus, Resolved images of the protoplanetary disk around HD 100546 with ALMA. Astrophys. J. Lett. 788, 34 (2014). doi:10.1088/2041-8205/788/2/L34

    Article  ADS  Google Scholar 

  • P. Pinilla, N. van der Marel, L.M. Pérez, E.F. van Dishoeck, S. Andrews, T. Birnstiel, G. Herczeg, K.M. Pontoppidan, T. van Kempen, Testing particle trapping in transition disks with ALMA. Astron. Astrophys. 584, 16 (2015). doi:10.1051/0004-6361/201526655

    Article  ADS  Google Scholar 

  • C. Qi, D.J. Wilner, Y. Aikawa, G.A. Blake, M.R. Hogerheijde, Resolving the chemistry in the disk of TW hydrae. I. Deuterated species. Astrophys. J. 681, 1396–1407 (2008). doi:10.1086/588516

    Article  ADS  Google Scholar 

  • A. Roberge, P.D. Feldman, A.M. Lagrange, A. Vidal-Madjar, R. Ferlet, A. Jolly, J.L. Lemaire, F. Rostas, High-resolution Hubble Space Telescope STIS spectra of C I and CO in the\(\beta\) Pictoris circumstellar disk. Astrophys. J. 538, 904–910 (2000). doi:10.1086/309157

    Article  ADS  Google Scholar 

  • A. Roberge, I. Kamp, B. Montesinos, W.R.F. Dent, G. Meeus, J.K. Donaldson, J. Olofsson, A. Moór, J.-C. Augereau, C. Howard, C. Eiroa, W.-F. Thi, D.R. Ardila, G. Sandell, P. Woitke, Herschel observations of gas and dust in the unusual 49 Ceti debris disk. Astrophys. J. 771, 69 (2013). doi:10.1088/0004-637X/771/1/69

    Article  ADS  Google Scholar 

  • A. Roberge, B.Y. Welsh, I. Kamp, A.J. Weinberger, C.A. Grady, Volatile-rich circumstellar gas in the unusual 49 Ceti debris disk. Astrophys. J. Lett. 796, 11 (2014). doi:10.1088/2041-8205/796/1/L11

    Article  ADS  Google Scholar 

  • L.E. Strubbe, E.I. Chiang, Dust dynamics, surface brightness profiles, and thermal spectra of debris disks: the case of AU microscopii. Astrophys. J. 648, 652–665 (2006). doi:10.1086/505736

    Article  ADS  Google Scholar 

  • K.Y.L. Su, G.H. Rieke, K.R. Stapelfeldt, R. Malhotra, G. Bryden, P.S. Smith, K.A. Misselt, A. Moro-Martin, J.P. Williams, The debris disk around HR 8799. Astrophys. J. 705, 314–327 (2009). doi:10.1088/0004-637X/705/1/314

    Article  ADS  Google Scholar 

  • S.C. Tegler, W. Romanishin, Two distinct populations of Kuiper-belt objects. Nature 392, 49 (1998). doi:10.1038/32108

    Article  ADS  Google Scholar 

  • L. Testi, T. Birnstiel, L. Ricci, S. Andrews, J. Blum, J. Carpenter, C. Dominik, A. Isella, A. Natta, J.P. Williams, D.J. Wilner, Dust evolution in protoplanetary disks, in Protostars and Planets VI (2014), pp. 339–361. doi:10.2458/azu_uapress_9780816531240-ch015

    Google Scholar 

  • N.D. Thureau, J.S. Greaves, B.C. Matthews, G. Kennedy, N. Phillips, M. Booth, G. Duchêne, J. Horner, D.R. Rodriguez, B. Sibthorpe, M.C. Wyatt, An unbiased study of debris discs around A-type stars with Herschel. Mon. Not. R. Astron. Soc. 445, 2558–2573 (2014). doi:10.1093/mnras/stu1864

    ADS  Google Scholar 

  • N. van der Marel, E.F. van Dishoeck, S. Bruderer, T. Birnstiel, P. Pinilla, C.P. Dullemond, T.A. van Kempen, M. Schmalzl, J.M. Brown, G.J. Herczeg, G.S. Mathews, V. Geers, A major asymmetric dust trap in a transition disk. Science 340, 1199–1202 (2013). doi:10.1126/science.1236770

    Article  ADS  Google Scholar 

  • N. van der Marel, P. Pinilla, J. Tobin, T. van Kempen, S. Andrews, L. Ricci, T. Birnstiel, A concentration of centimeter-sized grains in the Ophiuchus IRS 48 dust trap. Astrophys. J. Lett. 810, 7 (2015a). doi:10.1088/2041-8205/810/1/L7

    Article  ADS  Google Scholar 

  • N. van der Marel, E.F. van Dishoeck, S. Bruderer, L. Pérez, A. Isella, Gas density drops inside dust cavities of transitional disks around young stars observed with ALMA. Astron. Astrophys. 579, 106 (2015b). doi:10.1051/0004-6361/201525658

    Article  Google Scholar 

  • C. Walsh, A. Juhász, P. Pinilla, D. Harsono, G.S. Mathews, W.R.F. Dent, M.R. Hogerheijde, T. Birnstiel, G. Meeus, H. Nomura, Y. Aikawa, T.J. Millar, G. Sandell, ALMA hints at the presence of two companions in the disk around HD 100546. Astrophys. J. Lett. 791, 6 (2014). doi:10.1088/2041-8205/791/1/L6

    Article  ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, Populating the asteroid belt from two parent source regions due to the migration of giant planets: the grand tack. Meteorit. Planet. Sci. 47, 1941–1947 (2012). doi:10.1111/j.1945-5100.2012.01418.x

    Article  ADS  Google Scholar 

  • S.J. Weidenschilling, Dust to planetesimals—settling and coagulation in the solar nebula. Icarus 44, 172–189 (1980). doi:10.1016/0019-1035(80)90064-0

    Article  ADS  Google Scholar 

  • M.C. Wyatt, Dust in resonant extrasolar Kuiper belts: grain size and wavelength dependence of disk structure. Astrophys. J. 639, 1153–1165 (2006). doi:10.1086/499487

    Article  ADS  Google Scholar 

  • M.C. Wyatt, Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46, 339–383 (2008). doi:10.1146/annurev.astro.45.051806.110525

    Article  ADS  Google Scholar 

  • M.C. Wyatt, R. Smith, K.Y.L. Su, G.H. Rieke, J.S. Greaves, C.A. Beichman, G. Bryden, Steady state evolution of debris disks around a stars. Astrophys. J. 663, 365–382 (2007). doi:10.1086/518404

    Article  ADS  Google Scholar 

  • M.C. Wyatt, G. Kennedy, B. Sibthorpe, A. Moro-Martín, J.-F. Lestrade, R.J. Ivison, B. Matthews, S. Udry, J.S. Greaves, P. Kalas, S. Lawler, K.Y.L. Su, G.H. Rieke, M. Booth, G. Bryden, J. Horner, J.J. Kavelaars, D. Wilner, Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems. Mon. Not. R. Astron. Soc. 424, 1206–1223 (2012). doi:10.1111/j.1365-2966.2012.21298.x

    ADS  Google Scholar 

  • M.C. Wyatt, O. Panić, G.M. Kennedy, L. Matrà, Five steps in the evolution from protoplanetary to debris disk. Astrophys. Space Sci. 357, 103 (2015). doi:10.1007/s10509-015-2315-6

    Article  ADS  Google Scholar 

  • K. Zhang, G.A. Blake, E.A. Bergin, Evidence of fast pebble growth near condensation fronts in the HL tau protoplanetary disk. Astrophys. J. Lett. 806, 7 (2015). doi:10.1088/2041-8205/806/1/L7

    Article  ADS  Google Scholar 

  • E. Zinner, C. Göpel, Aluminum-26 in H4 chondrites: implications for its production and its usefulness as a fine-scale chronometer for early solar system events. Meteorit. Planet. Sci. 37, 1001–1013 (2002)

    Article  ADS  Google Scholar 

  • B. Zuckerman, I. Song, A 40 Myr old gaseous circumstellar disk at 49 Ceti: massive CO-rich comet clouds at young A-type stars. Astrophys. J. 758, 77 (2012). doi:10.1088/0004-637X/758/2/77

    Article  ADS  Google Scholar 

  • B. Zuckerman, D. Koester, I.N. Reid, M. Hünsch, Metal lines in DA white dwarfs. Astrophys. J. 596, 477–495 (2003). doi:10.1086/377492

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the efforts of O. Panić and W. Holland, who provided the revised SONS data of Fig. 1 prior to publication and S. Lawler for a revision of Fig. 2 for this publication. The authors also acknowledge the efforts of two referees, whose queries and suggestions improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda C. Matthews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthews, B.C., Kavelaars, J. Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution. Space Sci Rev 205, 213–230 (2016). https://doi.org/10.1007/s11214-016-0249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0249-0

Keywords

Navigation