[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Network dynamics in university-industry collaboration: a collaboration-knowledge dual-layer network perspective

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Collaborations between universities and firms provide a key pathway for innovation. In the big data era, however, the interactions between these two communities are being reshaped by information of much higher complexity and knowledge exchanges with more volume and pace. With this research, we put forward a methodology for comprehensively measuring both actor collaboration and produced knowledge in shaping network dynamics of university-industry collaboration. Using dual-layer networks consisting of organizations and topics, we mapped the longitudinal correlations between partnerships and knowledge in terms of both co-applications of patents and semantics. Network structures, individual characteristics, and knowledge proximity indicators were used to depict the longitudinal networks and then model the network dynamics. Further, a stochastic actor-oriented model was used to provide insights into the factors contributing to the network’s evolution. A case study on university-industry collaborations in the information and communications technology sector demonstrates the feasibility of the methodology. The result of this study can be used for future research into the mechanisms that underpin university-industry collaborations and opportunity discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhtar, P., Khan, Z., Rao-Nicholson, R., & Zhang, M. (2019). Building relationship innovation in global collaborative partnerships: Big data analytics and traditional organizational powers. R&D Management, 49, 7–20.

    Article  Google Scholar 

  • Barrat, A., Barthélemy, M. & vespignani, A. 2004. Weighted evolving networks: Coupling topology and weight dynamics. Physical review letters, 92, 228701.

  • Blei, D. M. (2012). Probabilistic Topic Models. Communications of the Acm, 55, 77–84.

    Article  Google Scholar 

  • Block, P., Stadtfeld, C., & Snijders, T. A. B. (2019). Forms of dependence: Comparing SAOMs and ERGMs from basic principles. Sociological Methods & Research, 48, 202–239.

    Article  MathSciNet  Google Scholar 

  • Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323, 892–895.

    Article  Google Scholar 

  • Brennecke, J., & Rank, O. (2017). The firm’s knowledge network and the transfer of advice among corporate inventors–a multilevel network study. Research Policy, 46, 768–783.

    Article  Google Scholar 

  • Cao, D., Li, H., Wang, G., Luo, X., Yang, X., & Tan, D. (2017). Dynamics of project-based collaborative networks for BIM implementation: Analysis based on stochastic actor-oriented models. Journal of Management in Engineering, 33, 04016055.

    Article  Google Scholar 

  • Cecere, G., Corrocher, N., Gossart, C., & Ozman, M. (2014). Technological pervasiveness and variety of innovators in Green ICT: A patent-based analysis. Research Policy, 43, 1827–1839.

    Article  Google Scholar 

  • Chang, S.-H. (2017). The technology networks and development trends of university-industry collaborative patents. Technological Forecasting and Social Change, 118, 107–113.

    Article  Google Scholar 

  • Chen, H., Jin, Q., Wang, X., & Xiong, F. (2022). Profiling academic-industrial collaborations in bibliometric-enhanced topic networks: A case study on digitalization research. Technological Forecasting and Social Change, 175, 121402.

    Article  Google Scholar 

  • Chen, H., Wang, X., Pan, S., & Xiong, F. (2021). Identify topic relations in scientific literature using topic modeling. IEEE Transactions on Engineering Management, 68, 1232–1244.

    Article  Google Scholar 

  • Criscuolo, P., Laursen, K., Reichstein, T., & Salter, A. (2018). Winning combinations: Search strategies and innovativeness in the UK. Industry and Innovation, 25, 115–143.

    Article  Google Scholar 

  • Curiskis, S. A., Drake, B., Osborn, T. R., & Kennedy, P. J. (2020). An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit. Information Processing & Management, 57, 102034.

    Article  Google Scholar 

  • de Battisti, F., Ferrara, A., & Salini, S. (2015). A decade of research in statistics: A topic model approach. Scientometrics, 103, 413–433.

    Article  Google Scholar 

  • Feng, S. J. (2020). The proximity of ideas: An analysis of patent text using machine learning. PLoS ONE, 15, 19.

    Article  Google Scholar 

  • Fischer, B. B., Schaeffer, P. R., & Vonortas, N. S. (2019). Evolution of university-industry collaboration in Brazil from a technology upgrading perspective. Technological Forecasting and Social Change, 145, 330–340.

    Article  Google Scholar 

  • Fitjar, R. D., & Rodríguez-pose, A. (2013). Firm collaboration and modes of innovation in Norway. Research Policy, 42, 128–138.

    Article  Google Scholar 

  • Fleming, L., & Frenken, K. (2007). The evolution of inventor networks in the silicon valley and Boston regions. Advances in Complex Systems, 10, 53–71.

    Article  MATH  Google Scholar 

  • Gao, X., Qi, G., & Cao, J. (2019). Influence of openness on the innovation performance in the industry–university–research cooperation innovation networks. Science Research Management, 40, 231–240.

    Google Scholar 

  • Gilsing, V., Nooteboom, B., Vanhaverbeke, W., Duysters, G., & van den Oord, A. (2008). Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density. Research Policy, 37, 1717–1731.

    Article  Google Scholar 

  • Giuliani, E. (2013). Network dynamics in regional clusters: Evidence from Chile. Research Policy, 42, 1406–1419.

    Article  Google Scholar 

  • Giunta, A., Pericoli, F. M., & Pierucci, E. (2016). University-Industry collaboration in the biopharmaceuticals: The Italian case. Journal of Technology Transfer, 41, 818–840.

    Article  Google Scholar 

  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101, 5228–5235.

    Article  Google Scholar 

  • Guan, J., & Liu, N. (2016). Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Research Policy, 45, 97–112.

    Article  Google Scholar 

  • Guan, J., Yan, Y., & Zhang, J. J. (2017). The impact of collaboration and knowledge networks on citations. Journal of Informetrics, 11, 407–422.

    Article  Google Scholar 

  • Guan, J., & Zhao, Q. (2013). The impact of university–industry collaboration networks on innovation in nanobiopharmaceuticals. Technological Forecasting and Social Change, 80, 1271–1286.

    Article  Google Scholar 

  • Heinrich, G. 2005. Parameter estimation for text analysis. Technical report

  • Hellsten, I., & Leydesdorff, L. (2020). Automated analysis of actor–topic networks on twitter: New approaches to the analysis of socio-semantic networks. Journal of the Association for Information Science and Technology, 71, 3–15.

    Article  Google Scholar 

  • Hossain, L., Hamra, J., Wigand, R. T., & Carlsson, S. (2015). Exponential random graph modeling of emergency collaboration networks. Knowledge-Based Systems, 77, 68–79.

    Article  Google Scholar 

  • Huang, A. H., Lehavy, R., Zang, A. Y., & Zheng, R. (2018). Analyst Information Discovery and Interpretation Roles: A Topic Modeling Approach. Management Science, 64, 2833–2855.

    Article  Google Scholar 

  • Huang, M. H., Yang, H. W., & Chen, D. Z. (2015). Industry-academia collaboration in fuel cells: A perspective from paper and patent analysis. Scientometrics, 105, 1301–1318.

    Article  Google Scholar 

  • Jin, Q., Chen, H., Wang, X., Ma, T., & Xiong, F. (2022). Exploring funding patterns with word embedding-enhanced organization–topic networks: A case study on big data. Scientometrics, in Press: https://doi.org/10.1007/s11192-021-04253-x

    Article  Google Scholar 

  • Jung, S., & Yoon, W. C. (2020). An alternative topic model based on common interest authors for topic evolution analysis. Journal of Informetrics, 14, 101040.

    Article  Google Scholar 

  • Kalish, Y. (2020). Stochastic Actor-Oriented Models for the Co-Evolution of Networks and Behavior: An Introduction and Tutorial. Organizational Research Methods, 23, 511–534.

    Article  Google Scholar 

  • Kim, D., Seo, D., Cho, S., & Kang, P. (2019). Multi-co-training for document classification using various document representations: TF–IDF, LDA, and Doc2Vec. Information Sciences, 477, 15–29.

    Article  Google Scholar 

  • Kim, H. K., Kim, H., & Cho, S. (2017). Bag-of-concepts: Comprehending document representation through clustering words in distributed representation. Neurocomputing, 266, 336–352.

    Article  Google Scholar 

  • Kim, H. J., Kim, T. S., & Sohn, S. Y. (2020). Recommendation of startups as technology cooperation candidates from the perspectives of similarity and potential: A deep learning approach. Decision Support Systems, 130, 12.

    Article  Google Scholar 

  • Kim, H. D., Lee, D. H., Choe, H., & Seo, I. W. (2014). The evolution of cluster network structure and firm growth: A study of industrial software clusters. Scientometrics, 99, 77–95.

    Article  Google Scholar 

  • Kong, X., Shi, Y., Yu, S., Liu, J., & Xia, F. (2019). Academic social networks: Modeling, analysis, mining and applications. Journal of Network and Computer Applications, 132, 86–103.

    Article  Google Scholar 

  • Le, Q. & Mikolov, T. Distributed representations of sentences and documents. Proceedings of the 31st international conference on machine learning (ICML-14), 2014. 1188–1196.

  • Lenz, D. & Winker, P. 2020. Measuring the diffusion of innovations with paragraph vector topic models. Plos One, 15.

  • Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving distributional similarity with lessons learned from word embeddings. Transactions of the Association for Computational Linguistics, 3, 211–225.

    Article  Google Scholar 

  • Liefner, I., & Hennemann, S. (2011). Structural holes and new dimensions of distance: The spatial configuration of the scientific knowledge network of China’s optical technology sector. Environment and Planning A, 43, 810–829.

    Article  Google Scholar 

  • Liu, X., Bollen, J., Nelson, M. L., & van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information Processing & Management, 41, 1462–1480.

    Article  Google Scholar 

  • Magazinik, A., Mäkinen, S. J., Lasheras, N. C., Bedolla, J. S. & Saari, U. Research-industry collaboration: A review of the literature on evaluation methods and motivations. 2019 portland international conference on management of engineering and technology (PICMET), 25–29 Aug. 2019 2019. 1–19.

  • Mao, C. F., Yu, X. Y., Zhou, Q., Harms, R., & Fang, G. (2020). Knowledge growth in university-industry innovation networks–results from a simulation study. Technological Forecasting and Social Change, 151, 9.

    Article  Google Scholar 

  • Mendsaikhan, O., Hasegawa, H., Yamaguchi, Y. & Shimada, H. Identification of cybersecurity specific content using the Doc2Vec language model. 2019 IEEE 43rd annual computer software and applications conference (COMPSAC), 15–19 Jul 2019 2019. 396–401.

  • MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. S. & DEAN, J. 2013. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 3111–3119.

  • Molina-Morales, F. X., GARCíA-Villaverde, P. M., & Parra-Requena, G. (2014). Geographical and cognitive proximity effects on innovation performance in SMEs: A way through knowledge acquisition. International Entrepreneurship and Management Journal, 10, 231–251.

    Article  Google Scholar 

  • Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Nsanzumuhire, S. U., & Groot, W. (2020). Context perspective on university-industry collaboration processes: A systematic review of literature. Journal of Cleaner Production, 258, 120861.

    Article  Google Scholar 

  • O’ Connor, M., Doran, J., & Mccarthy, N. (2021). Cognitive proximity and innovation performance: Are collaborators equal? European Journal of Innovation Management, 24, 637–654.

    Article  Google Scholar 

  • Phelps, C., Heidl, R., & Wadhwa, A. (2012). Knowledge, networks, and knowledge networks. Journal of Management, 38, 1115–1166.

    Article  Google Scholar 

  • Ripley, R., Snijders, T. A. B., Boda, Z., VöRöS, A. & Preciado, P. 2017. Manual for SIENA version 4.0.: Oxford: University of Oxford, Department of Statistics.

  • RøPKE, I. (2012). The unsustainable directionality of innovation–The example of the broadband transition. Research Policy, 41, 1631–1642.

    Article  Google Scholar 

  • Roth, C., & Cointet, J.-P. (2010). Social and semantic coevolution in knowledge networks. Social Networks, 32, 16–29.

    Article  Google Scholar 

  • Shahmirzadi, O., Lugowski, A. & Younge, K. Text similarity in vector space models: a comparative study. 2019 18th IEEE international conference on machine learning and applications (ICMLA), 2019. IEEE, 659–666.

  • Snijders, T. A. B., (2017) Stochastic Actor-Oriented Models for Network Dynamics. In: Fienberg, S. E. (ed.) Annual review of statistics and its application, vol 4.

  • Snijders, T. A. B., van de Bunt, G. G., & Steglich, C. E. G. (2010). Introduction to stochastic actor-based models for network dynamics. Social Networks, 32, 44–60.

    Article  Google Scholar 

  • Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology, 41, 643–681.

    Article  Google Scholar 

  • Stadtfeld, C., Snijders, T. A. B., Steglich, C., & van Duijn, M. (2020). Statistical power in longitudinal network studies. Sociological Methods & Research, 49, 1103–1132.

    Article  MathSciNet  Google Scholar 

  • Teng, T. W., Cao, X. Z. & Chen, H. T. (2021) The dynamics of inter-firm innovation networks: The case of the photovoltaic industry in China. Energy Strategy Reviews, 33.

  • ter Wal, A. L. J., & Boschma, R. (2011). Co-evolution of firms, industries and networks in space. Regional Studies, 45, 919–933.

    Article  Google Scholar 

  • THIJS, B. (2020). Using neural-network based paragraph embeddings for the calculation of within and between document similarities. Scientometrics, 125, 835–849.

    Article  Google Scholar 

  • Uwe, C., & Bastian, R. (2014). International research networks in pharmaceuticals: Structure and dynamics. Research Policy, 43, 333–348.

    Article  Google Scholar 

  • Walter,W., Powell Douglas, R., White, Kenneth W., Koput & Jason Owen‐Smith, 2005. Network dynamics and field evolution: The Growth of interorganizational collaboration in the life sciences. American Journal of Sociology, 110, 1132-1205

  • Wang, C.-H., & Hsu, L.-C. (2014). Building exploration and exploitation in the high-tech industry: The role of relationship learning. Technological Forecasting and Social Change, 81, 331–340.

    Article  Google Scholar 

  • Wittfoth, S. 2019. Identification of probable standard fissential patents (SEPs) based on semantic analysis of patent claims. In: Kocaoglu, D. F., Anderson, T. R., Kozanoglu, D. C., Niwa, K. & Steenhuis, H. J. (eds.) 2019 Portland international conference on management of engineering and technology. New York: Ieee.

  • Yan, Y., & Guan, J. (2018). Social capital, exploitative and exploratory innovations: The mediating roles of ego-network dynamics. Technological Forecasting and Social Change, 126, 244–258.

    Article  Google Scholar 

  • Yuan, J. F., & Xu, Z. (2017). Research on the structural characteristics and evolution of industry-university–research cooperation networks in China: Based on analysis of patent data from 1985 to 2013 years. Chinese Journal of Management, 14, 1024–1032.

    Google Scholar 

  • Zhai, Y., Ding, Y., & Zhang, H. (2021). Innovation adoption: Broadcasting versus virality. Journal of the Association for Information Science and Technology, 72, 403–416.

    Article  Google Scholar 

  • ZHANG, Z. G. & LUO, T. Y. 2020. Network capital, exploitative and exploratory innovations-from the perspective of network dynamics. Technological Forecasting and Social Change, 152.

  • Zhang, R. J., & Ye, F. Y. (2020). Measuring similarity for clarifying layer difference in multiplex ad hoc duplex information networks. Journal of Informetrics, 14, 100987.

    Article  Google Scholar 

  • Zhang, Y., Chen, K., Zhu, G., Yam, R. C. M., & Guan, J. (2016). Inter-organizational scientific collaborations and policy effects: An ego-network evolutionary perspective of the Chinese academy of sciences. Scientometrics, 108, 1383–1415.

    Article  Google Scholar 

  • Zhang, Y., Lu, J., Liu, F., Liu, Q., Porter, A., Chen, H. S., & Zhang, G. Q. (2018). Does deep learning help topic extraction? A kernel k-means clustering method with word embedding. Journal of Informetrics, 12, 1099–1117.

    Article  Google Scholar 

  • Zhao, L. M., Zhang, H. H., & Wu, W. Q. (2019). Cooperative knowledge creation in an uncertain network environment based on a dynamic knowledge supernetwork. Scientometrics, 119, 657–685.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 72004009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshu Chen.

Appendix 1

Appendix 1

See Table 4

Table 4 Topics extracted from DII patents for ICT area in China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Song, X., Jin, Q. et al. Network dynamics in university-industry collaboration: a collaboration-knowledge dual-layer network perspective. Scientometrics 127, 6637–6660 (2022). https://doi.org/10.1007/s11192-022-04330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-022-04330-9

Keywords