Abstract
We present an extensive survey of bijective proofs of classical partitions identities. While most bijections are known, they are often presented in a different, sometimes unrecognizable way. Various extensions and generalizations are added in the form of exercises.
Similar content being viewed by others
References
Adiga, C., Berndt, B.C., Bhargava, S., Watson, G.N.: Chapter 16 of Ramanujan’s second notebook: theta-functions and q-series. Mem. Amer. Math. Soc. 53(315), v+85 (1985)
Ahlgren, S., Ono, K.: Addition and counting: the arithmetic of partitions. Notices Amer. Math. Soc. 48(9), 978–984 (2001)
Aigner, M., Ziegler, G.M.: Proofs from The Book. 2nd edition, Springer-Verlag, Berlin (2001)
Alder, H.L.: Partition identities—from Euler to the present. Amer. Math. Monthly 76, 733–746 (1969)
Alladi, K.: A fundamental invariant in the theory of partitions. In Topics in Number Theory (University Park, PA, 1997), pp. 101–113. Kluwer Acad. Publ., Dordrecht (1999)
Alladi, K.: A variation on a theme of Sylvester—a smoother road to Göllnitz’s (big) theorem. Discrete Math. 196(1/3), 1–11 (1999)
Alladi, K., Gordon, B.: Partition identities and a continued fraction of Ramanujan. J. Combin. Theory Ser. A 63(2), 275–300 (1993)
Alladi, K., Gordon, B.: Schur’s partition theorem, companions, refinements and generalizations. Trans. Amer. Math. Soc. 347(5), 1591–1608 (1995)
Andrews, G.E.: A simple proof of Jacobi’s triple product identity. Proc. Amer. Math. Soc. 16, 333–334 (1965)
Andrews, G.E.: On basic hypergeometric series, mock theta functions, and partitions. II. Quart. J. Math. Oxford Ser. (2), 17, 132–143 (1966)
Andrews, G.E.: On generalizations of Euler’s partition theorem. Michigan Math. J. 13, 491–498 (1966)
Andrews, G.E.: Enumerative proofs of certain q-identities. Glasgow Math. J. 8, 33–40 (1967)
Andrews, G.E.: On a calculus of partition functions. Pacific J. Math. 31, 555–562 (1969)
Andrews, G.E.: Two theorems of Gauss and allied identities proved arithmetically. Pacific J. Math. 41, 563–578 (1972)
Andrews, G.E.: An extension of Carlitz’s bipartition identity. Proc. Amer. Math. Soc. 63(1), 180–184 (1977)
Andrews, G.E.: An introduction to Ramanujan’s “lost” notebook. Amer. Math. Monthly 86(2), 89–108 (1979)
Andrews, G.E.: A note on partitions and triangles with integer sides. Amer. Math. Monthly 86(6), 477–478 (1979)
Andrews, G.E.: Partitions and Durfee dissection. Amer. J. Math. 101(3), 735–742 (1979)
Andrews, G.E.: Ramanujan’s “lost” notebook. I. Partial θ-functions. Adv. in Math. 41(2), 137–172 (1981)
Andrews, G.E.: On a partition theorem of N. J. Fine. J. Nat. Acad. Math. India 1(2), 105–107 (1983)
Andrews, G.E.: Use and extension of Frobenius’ representation of partitions. In Enumeration and Design (Waterloo, Ont., 1982), pp. 51–65. Academic Press, Toronto, ON (1984)
Andrews, G.E.: Combinatorics and Ramanujan’s “lost” notebook. In Surveys in Combinatorics 1985 (Glasgow, 1985), pp. 1–23. Cambridge Univ. Press, Cambridge (1985)
Andrews, G.E., Sylvester, J.J.: Johns Hopkins and partitions. In A century of mathematics in America, Part I, pp. 21–40. Amer. Math. Soc., Providence, RI (1988)
Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)
Andrews, G.E.: Some debts I owe. Sém. Lothar. Combin., 42:Art. B42a, 16 pp. (electronic) (1999)
Andrews, G.E.: MacMahon’s partition analysis. II. Fundamental theorems. Ann. Comb. 4(3–4):327–338, Conference on Combinatorics and Physics (Los Alamos, NM, 1998) (2000)
Andrews, G.E.: Schur’s theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. In q-series from a contemporary perspective (South Hadley, MA, 1998), pp. 45–56. Amer. Math. Soc., Providence, RI (2000)
Andrews, G.E., Ekhad, S.B., Zeilberger, D.: A short proof of Jacobi’s formula for the number of representations of an integer as a sum of four squares. Amer. Math. Monthly 100(3), 274–276 (1993)
Andrews, G.E., Garvan, F.G.: Dyson’s crank of a partition. Bull. Amer. Math. Soc. (N.S.) 18(2), 167–171 (1988)
Askey, R.: Ramanujan and hypergeometric and basic hypergeometric series. In Ramanujan International Symposium on Analysis (Pune, 1987), pp. 1–83. Macmillan of India, New Delhi (1989)
Askey, R.: The work of George Andrews: a Madison perspective. Sém. Lothar. Combin., 42:Art. B42b, 24 pp. (electronic) (1999)
Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. London Math. Soc. 4(3), 84–106 (1954)
Bach, E., Shallit, J.: Algorithmic Number Theory. Vol. 1. MIT Press, Cambridge, MA (1996)
Bacher, R., Manivel, L.: Hooks and powers of parts in partitions. Sém. Lothar. Combin., 47:Article B47d, 11 pp. (electronic) (2001)
Bell, E.T.: The form wx + xy + yz + zu. Bull. Amer. Math. Soc. 42, 377–380 (1936)
Bender, E.A., Knuth, D.E.: Enumeration of plane partitions. J. Combinatorial Theory Ser. A 13, 40–54 (1972)
Berkovich, A., Garvan, F.G.: Some observations on Dyson’s new symmetries of partitions. J. Combin. Theory Ser. A 100(1), 61–93 (2002)
Bessenrodt, C.: A bijection for Lebesgue’s partition identity in the spirit of Sylvester. Discrete Math. 132(1–3), 1–10 (1994)
Bessenrodt, C.: On hooks of Young diagrams. Ann. Comb. 2(2), 103–110 (1998)
Bessenrodt, C.: On pairs of partitions with steadily decreasing parts. J. Combin. Theory Ser. A 99, 162–174 (2002)
Bousquet-Mélou, M., Eriksson, K.: Lecture hall partitions. Ramanujan J. 1(1), 101–111 (1997)
Bousquet-Mélou, Eriksson, K.: A refinement of the lecture hall theorem. J. Combin. Theory Ser. A 86(1), 63–84 (1999)
Bressoud, D.M. 7. On a partition theorem of Göllnitz. J. Reine Angew. Math. 305, 215–217.
Bressoud, D.M.: A combinatorial proof of Schur’s 1926 partition theorem. Proc. Amer. Math. Soc. 79(2), 338–340 (1980)
Bressoud, D.M., Subbarao, M.V.: On Uchimura’s connection between partitions and the number of divisors. Canad. Math. Bull 27(2), 143–145 (1984)
Bressoud, D.M., Zeilberger, D.: A short Rogers-Ramanujan bijection. Discrete Math. 38(2–3), 313–315 (1982)
Bressoud, D.M., Zeilberger, D.: Bijecting Euler’s partitions-recurrence. Amer. Math. Monthly 92(1), 54–55 (1985)
Bressoud, D.M., Zeilberger, D.: Generalized Rogers-Ramanujan bijections. Adv. Math. 78(1), 42–75 (1989)
Canfield, R., Corteel, S., Hitczenko, P.: Random partitions with non-negative r-th differences. Adv. in Appl. Math. 27(2–3), 298–317 (2001)
Carlitz, L. Some generating functions. Duke Math. J. 30, 191–201 (1963)
Carlitz, L.: Generating functions and partition problems. In Proc. Sympos. Pure Math., Vol. VIII, pp. 144–169. Amer. Math. Soc., Providence, R.I. (1965)
Carlitz, L., Subbarao, M.V.: A simple proof of the quintuple product identity. Proc. Amer. Math. Soc. 32, 42–44 (1972)
Cayley, A.: A letter to Dr. Franklin (an extract). Johns Hopkins Univ. Circular 2(22), 86 (1883)
Chapman, R.: Franklin’s argument proves an identity of Zagier. Electron. J. Combin. 7(1), Research Paper 54, 5 pp. (electronic) (2000)
Cheema, M.S.: Vector partitions and combinatorial identities. Math. Comp. 18, 414–420 (1964)
Cohen, D.I.A.: PIE-sums: a combinatorial tool for partition theory. J. Combin. Theory Ser. A 31(3), 223–236 (1981)
Corteel, S. Particle seas and basic hypergeometric series. Adv. in Appl. Math. 31(1), 199–214 (2003)
Corteel, S., Lovejoy, J.: Frobenius partitions and the combinatorics of Ramanujan’s 1ψ1 summation. J. Combin. Theory Ser. A 97(1), 177–183 (2002)
Corteel, S., Lovejoy, J.: Overpartitions. Trans. Amer. Math. Soc. 356(4), 1623–1635 (2004)
Dyson, F.J.: Some Guesses in The Theory of Partitions. Eureka (Cambridge) 8, 10–15 (1944)
Dyson, F.J.: A new symmetry of partitions. J. Combin. Theory 7, 56–61 (1969)
Dyson, F.J.: A walk through Ramanujan’s garden. In Ramanujan revisited (Urbana-Champaign, Ill., 1987), pp. 7–28. Academic Press, Boston, MA (1988)
Dyson, F.J.: Mappings and symmetries of partitions. J. Combin. Theory Ser. A 51(2), 169–180 (1989)
Edwards, H.M.: Fermat’s last theorem. Springer-Verlag, New York (1996)
Erdös, P.: On an elementary proof of some asymptotic formulas in the theory of partitions. Ann. Math. 43(2), 437–450 (1942)
Euler, L. Introductio in analysin infinitorum. Tomus primus. Marcum-Michaelem Bousquet, Lausannae (1748)
Ewell, J.A.: Recurrences for the sum of divisors. Proc. Amer. Math. Soc. 64(2), 214–218 (1977)
Farkas, H.M., Kra, I.: Theta constants, Riemann surfaces and the modular group, vol. 37 of Graduate Studies in Mathematics. AMS, Providence, RI (2001)
Fine, N.J.: Some new results on partitions. Proc. Nat. Acad. Sci. USA 34, 616–618 (1948)
Fine, N.J.: Basic hypergeometric series and applications. AMS, Providence, RI (1988)
Foata, D., Han, G.-N.: The triple, quintuple and septuple product identities revisited. Sém. Lothar. Combin., 42: Art. B42o, 12 pp. (electronic) (1999)
Franklin, F.: Sure le développement du produit infini (1 −x)(1 −x 2)(1 −x 3)... C. R. Acad. Paris Ser A 92:448–450 (1881)
Franklin, F.: On partitions. Johns Hopkins Univ. Circular 2(22), 72 (1883)
Garrett, K., Ismail, M.E.H., Stanton, D.: Variants of the Rogers-Ramanujan identities. Adv. in Appl. Math. 23(3), 274–299 (1999)
Garsia, A.M. Combinatorics Lecture Notes. (November 10, 1999), to appear.
Garsia, A.M., Milne, S.C.: A Rogers-Ramanujan bijection. J. Combin. Theory Ser. A 31(3), 289–339 (1981)
Garvan, F.G.: New combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7 and 11. Trans. Amer. Math. Soc. 305(1), 47–77 (1988)
Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)
Gupta, H.: Combinatorial proof of a theorem on partitions into an even or odd number of parts. J. Combin. Theory Ser. A 21(1), 100–103 (1976)
Hardy, G.H.: Ramanujan. Twelve lectures suggested by his life and work. Cambridge University Press, Cambridge, England (1940)
Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. 17, 75–115 (1918)
Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. 5th edn. The Clarendon Press Oxford University Press, New York, (1979)
Hathaway, A.S.: A proof of a Theorem of Jacobi. Johns Hopkins Univ. Circular 2(25), 143–144 (1883)
Hickerson, D.R.: A partition identity of the Euler type. Amer. Math. Monthly 81, 627–629 (1974)
Hirschhorn, M.D.: Simple proofs of identities of MacMahon and Jacobi. Discrete Math. 16(2), 161–162 (1976)
Hirschhorn, M.D.: Polynomial identities which imply identities of Euler and Jacobi. Acta Arith. 32(1), 73–78 (1977)
Hirschhorn, M.D.: A simple proof of Jacobi’s two-square theorem. Amer. Math. Monthly 92(8), 579–580 (1985)
Hirschhorn, M.D.: A simple proof of Jacobi’s four-square theorem. Proc. Amer. Math. Soc. 101(3), 436–438 (1987)
Hoare, A.H.M.: An involution of blocks in the partitions of n. Amer. Math. Monthly 93(6), 475–476 (1986)
Ismail, M.E.H.: A simple proof of Ramanujan’s 1ψ1 sum. Proc. Amer. Math. Soc. 63(1), 185–186 (1977)
Joichi, J.T., Stanton, D.: An involution for Jacobi’s identity. Discrete Math. 73(3), 261–271 (1989)
Kanigel, R.: The Man Who Knew Infinity. Scribner, New York (1991)
Kim, D., Yee, A.J.: A note on partitions into distinct parts and odd parts. Ramanujan J. 3(2), 227–231 (1999)
Kleitman, D.J.: On the future of combinatorics. In: Essays on the future. Birkhäuser, Boston, MA (2000) pp. 123–134
Knuth, D.E., Paterson, M.S.: Identities from partition involutions. Fibonacci Quart. 16(3), 198–212 (1978)
Krattenthaler, C.: Another involution principle-free bijective proof of Stanley’s hook-content formula. J. Combin. Theory Ser. A 88(1), 66–92 (1999)
Leibenzon, Z.L.: A simple combinatorial method for proof of the Jacobi identity and its generalizations. Funktsional. Anal. i Prilozhen. 20(1), 77–78 (1986)
Leibenzon, Z.L.: A simple proof of the Macdonald identities for the series A. Funktsional. Anal. i Prilozhen. 25(3), 19–23 (1991)
Lewis, R.P.: A combinatorial proof of the triple product identity. Amer. Math. Monthly 91(7), 420–423 (1984)
Little, D.P.: An extension of Franklin’s bijection. Sém. Lothar. Combin., 42: Art. B42h, 10 pp. (electronic) (1999)
Macdonald, I.G.: Affine root systems and Dedekind’s η-function. Invent. Math. 15, 91–143 (1972)
MacMahon, P.A.: Combinatory analysis. Chelsea Publishing Co., New York (1960)
Miller, E., Pak, I. in preparation.
O’Hara, K.M.: Bijections for partition identities. J. Combin. Theory Ser. A 49(1), 13–25 (1988)
Pak, I. On Fine’s partition theorems, Dyson, Andrews, and missed opportunities. Math. Intelligencer, to appear.
Pak, I.: Partition identities and geometric bijections. Proc. Amer. Math. Soc. to appear.
Pak, I.: Hook length formula and geometric combinatorics. Sém. Lothar. Combin., 46:Art. B46f, 13 pp. (electronic) (2001)
Pak, I., Postnikov, A.: A generalization of Sylvester’s identity. Discrete Math. 178(1–3), 277–281 (1998)
Remmel, J.B.: Bijective proofs of some classical partition identities. J. Combin. Theory Ser. A 33(3), 273–286 (1982)
Sagan, B.E.: Bijective proofs of certain vector partition identities. Pacific J. Math. 102(1), 171–178 (1982)
Schur, I.: Ein Beitrag zur Additiven Zahlentheorie und zur Theorie der Kettenbrüche. S.-B. Preuss. Akad. Wiss. Phys. Math. Klasse, pp. 302–321 (1917)
Schur, I.: Zur Additiven Zahlentheorie. S.-B. Preuss. Akad. Wiss. Phys. Math. Klasse, pp. 488–495 (1926)
Shanks, D.: A short proof of an identity of Euler. Proc. Amer. Math. Soc. 2, 747–749 (1951)
Shiu, P.: Involutions associated with sums of two squares. Publ. Inst. Math. (Beograd) (N.S.), 59(73), 18–30, avaiable at: http://www.emis.de/journals/PIMB/073/index.html. (1996)
Stanley, R.P.: Enumerative combinatorics. Vol. 1, 2. Cambrridge University Press, Cambridge (1997, 1999)
Stanton, D.: An elementary approach to the Macdonald identities. In q–series and partitions (Minneapolis MN, 1988), pp. 139–149. Springer, New York (1989)
Stockhofe, D.: Bijektive Abbildungen auf der Menge der Partitionen einer natürlichen Zahl. Bayreuth. Math. Schr. (10), 1–59 (1982)
Stoyanovskii, A.V., Feigin, B.L.: Functional models of the representations of current algebras, and semi-infinite Schubert cells. Funktsional. Anal. i Prilozhen. 28(1), 68–90 (1994)
Subbarao, M.V.: Combinatorial proofs of some identities. In Proceedings of the Washington State University Conference on Number Theory (Washington State Univ., Pullman, Wash., 1971), pp. 80–91. Dept. Math., Washington State Univ., Pullman, Wash (1971)
Sudler, C.: Jr. Two enumerative proofs of an identity of Jacobi. Proc. Edinburgh Math. Soc. 15(2), 67–71 (1966)
Sylvester, J.J., Franklin, F.: A constructive theory of partitions, arranged in three acts, an interact and an exodion. Amer. J. Math. 5, 251–330 (1882)
Uchimura, K.: An identity for the divisor generating function arising from sorting theory. J. Combin. Theory Ser. A 31(2), 131–135 (1981)
Vahlen, K.T.: Beiträge zu einer additiven Zahlentheorie. J. Reine Angew. Math. 112, 1–36 (1893)
Vershik, A.M.: A bijective proof of the Jacobi identity, and reshapings of the Young diagrams. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 155 (Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII), 3–6 (1986)
Wenkov, B.A.: Elementary Number Theory, in Russian, ONTI, Moscow, USSR (1937)
Wilf, H.S. Lectures on Integer Partitions. (unpublished), avaiable at: http://www.cis.upenn.edu/∼wilf
Wilf, H.S.: Identically distributed pairs of partition statistics. Sém. Lothar. Combin., 44:Art B44c, 3 pp. (electronic) (2000)
Wright, E.M.: An enumerative proof of an identity of Jacobi. J. London Math. Soc. 40, 55–57 (1965)
Zagier, D.: A one-sentence proof that every prime p ≡ 1 (mod 4) is a sum of two squares. Amer. Math. Monthly 97(2), 144 (1990)
Zeng, J. The q-variations of Sylvester’s bijection between odd and strict partitions. Ramanujan J. 9(3), 289–303 (2005)
Zolnowsky, J.: A direct combinatorial proof of the Jacobi identity. Discrete Math. 9, 293–298 (1974)
Author information
Authors and Affiliations
Corresponding author
Additional information
2000 Mathematics Subject Classification Primary—05A17; Secondary—05A30; 11P83
The author was partially supported by NSA and NSF grants.
Rights and permissions
About this article
Cite this article
Pak, I. Partition bijections, a survey. Ramanujan J 12, 5–75 (2006). https://doi.org/10.1007/s11139-006-9576-1
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11139-006-9576-1