[go: up one dir, main page]

Skip to main content
Log in

Partition bijections, a survey

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We present an extensive survey of bijective proofs of classical partitions identities. While most bijections are known, they are often presented in a different, sometimes unrecognizable way. Various extensions and generalizations are added in the form of exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adiga, C., Berndt, B.C., Bhargava, S., Watson, G.N.: Chapter 16 of Ramanujan’s second notebook: theta-functions and q-series. Mem. Amer. Math. Soc. 53(315), v+85 (1985)

  2. Ahlgren, S., Ono, K.: Addition and counting: the arithmetic of partitions. Notices Amer. Math. Soc. 48(9), 978–984 (2001)

    Google Scholar 

  3. Aigner, M., Ziegler, G.M.: Proofs from The Book. 2nd edition, Springer-Verlag, Berlin (2001)

    MATH  Google Scholar 

  4. Alder, H.L.: Partition identities—from Euler to the present. Amer. Math. Monthly 76, 733–746 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alladi, K.: A fundamental invariant in the theory of partitions. In Topics in Number Theory (University Park, PA, 1997), pp. 101–113. Kluwer Acad. Publ., Dordrecht (1999)

  6. Alladi, K.: A variation on a theme of Sylvester—a smoother road to Göllnitz’s (big) theorem. Discrete Math. 196(1/3), 1–11 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alladi, K., Gordon, B.: Partition identities and a continued fraction of Ramanujan. J. Combin. Theory Ser. A 63(2), 275–300 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Alladi, K., Gordon, B.: Schur’s partition theorem, companions, refinements and generalizations. Trans. Amer. Math. Soc. 347(5), 1591–1608 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Andrews, G.E.: A simple proof of Jacobi’s triple product identity. Proc. Amer. Math. Soc. 16, 333–334 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  10. Andrews, G.E.: On basic hypergeometric series, mock theta functions, and partitions. II. Quart. J. Math. Oxford Ser. (2), 17, 132–143 (1966)

  11. Andrews, G.E.: On generalizations of Euler’s partition theorem. Michigan Math. J. 13, 491–498 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  12. Andrews, G.E.: Enumerative proofs of certain q-identities. Glasgow Math. J. 8, 33–40 (1967)

    MATH  MathSciNet  Google Scholar 

  13. Andrews, G.E.: On a calculus of partition functions. Pacific J. Math. 31, 555–562 (1969)

    MATH  MathSciNet  Google Scholar 

  14. Andrews, G.E.: Two theorems of Gauss and allied identities proved arithmetically. Pacific J. Math. 41, 563–578 (1972)

    MATH  MathSciNet  Google Scholar 

  15. Andrews, G.E.: An extension of Carlitz’s bipartition identity. Proc. Amer. Math. Soc. 63(1), 180–184 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Andrews, G.E.: An introduction to Ramanujan’s “lost” notebook. Amer. Math. Monthly 86(2), 89–108 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Andrews, G.E.: A note on partitions and triangles with integer sides. Amer. Math. Monthly 86(6), 477–478 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Andrews, G.E.: Partitions and Durfee dissection. Amer. J. Math. 101(3), 735–742 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  19. Andrews, G.E.: Ramanujan’s “lost” notebook. I. Partial θ-functions. Adv. in Math. 41(2), 137–172 (1981)

    MATH  Google Scholar 

  20. Andrews, G.E.: On a partition theorem of N. J. Fine. J. Nat. Acad. Math. India 1(2), 105–107 (1983)

    MATH  Google Scholar 

  21. Andrews, G.E.: Use and extension of Frobenius’ representation of partitions. In Enumeration and Design (Waterloo, Ont., 1982), pp. 51–65. Academic Press, Toronto, ON (1984)

  22. Andrews, G.E.: Combinatorics and Ramanujan’s “lost” notebook. In Surveys in Combinatorics 1985 (Glasgow, 1985), pp. 1–23. Cambridge Univ. Press, Cambridge (1985)

  23. Andrews, G.E., Sylvester, J.J.: Johns Hopkins and partitions. In A century of mathematics in America, Part I, pp. 21–40. Amer. Math. Soc., Providence, RI (1988)

  24. Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)

  25. Andrews, G.E.: Some debts I owe. Sém. Lothar. Combin., 42:Art. B42a, 16 pp. (electronic) (1999)

  26. Andrews, G.E.: MacMahon’s partition analysis. II. Fundamental theorems. Ann. Comb. 4(3–4):327–338, Conference on Combinatorics and Physics (Los Alamos, NM, 1998) (2000)

    Google Scholar 

  27. Andrews, G.E.: Schur’s theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. In q-series from a contemporary perspective (South Hadley, MA, 1998), pp. 45–56. Amer. Math. Soc., Providence, RI (2000)

  28. Andrews, G.E., Ekhad, S.B., Zeilberger, D.: A short proof of Jacobi’s formula for the number of representations of an integer as a sum of four squares. Amer. Math. Monthly 100(3), 274–276 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Andrews, G.E., Garvan, F.G.: Dyson’s crank of a partition. Bull. Amer. Math. Soc. (N.S.) 18(2), 167–171 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  30. Askey, R.: Ramanujan and hypergeometric and basic hypergeometric series. In Ramanujan International Symposium on Analysis (Pune, 1987), pp. 1–83. Macmillan of India, New Delhi (1989)

  31. Askey, R.: The work of George Andrews: a Madison perspective. Sém. Lothar. Combin., 42:Art. B42b, 24 pp. (electronic) (1999)

  32. Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. London Math. Soc. 4(3), 84–106 (1954)

    MATH  MathSciNet  Google Scholar 

  33. Bach, E., Shallit, J.: Algorithmic Number Theory. Vol. 1. MIT Press, Cambridge, MA (1996)

    MATH  Google Scholar 

  34. Bacher, R., Manivel, L.: Hooks and powers of parts in partitions. Sém. Lothar. Combin., 47:Article B47d, 11 pp. (electronic) (2001)

  35. Bell, E.T.: The form wx + xy + yz + zu. Bull. Amer. Math. Soc. 42, 377–380 (1936)

    Article  MATH  MathSciNet  Google Scholar 

  36. Bender, E.A., Knuth, D.E.: Enumeration of plane partitions. J. Combinatorial Theory Ser. A 13, 40–54 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  37. Berkovich, A., Garvan, F.G.: Some observations on Dyson’s new symmetries of partitions. J. Combin. Theory Ser. A 100(1), 61–93 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Bessenrodt, C.: A bijection for Lebesgue’s partition identity in the spirit of Sylvester. Discrete Math. 132(1–3), 1–10 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  39. Bessenrodt, C.: On hooks of Young diagrams. Ann. Comb. 2(2), 103–110 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Bessenrodt, C.: On pairs of partitions with steadily decreasing parts. J. Combin. Theory Ser. A 99, 162–174 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Bousquet-Mélou, M., Eriksson, K.: Lecture hall partitions. Ramanujan J. 1(1), 101–111 (1997)

    Google Scholar 

  42. Bousquet-Mélou, Eriksson, K.: A refinement of the lecture hall theorem. J. Combin. Theory Ser. A 86(1), 63–84 (1999)

  43. Bressoud, D.M. 7. On a partition theorem of Göllnitz. J. Reine Angew. Math. 305, 215–217.

  44. Bressoud, D.M.: A combinatorial proof of Schur’s 1926 partition theorem. Proc. Amer. Math. Soc. 79(2), 338–340 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  45. Bressoud, D.M., Subbarao, M.V.: On Uchimura’s connection between partitions and the number of divisors. Canad. Math. Bull 27(2), 143–145 (1984)

    MATH  MathSciNet  Google Scholar 

  46. Bressoud, D.M., Zeilberger, D.: A short Rogers-Ramanujan bijection. Discrete Math. 38(2–3), 313–315 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  47. Bressoud, D.M., Zeilberger, D.: Bijecting Euler’s partitions-recurrence. Amer. Math. Monthly 92(1), 54–55 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  48. Bressoud, D.M., Zeilberger, D.: Generalized Rogers-Ramanujan bijections. Adv. Math. 78(1), 42–75 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  49. Canfield, R., Corteel, S., Hitczenko, P.: Random partitions with non-negative r-th differences. Adv. in Appl. Math. 27(2–3), 298–317 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. Carlitz, L. Some generating functions. Duke Math. J. 30, 191–201 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  51. Carlitz, L.: Generating functions and partition problems. In Proc. Sympos. Pure Math., Vol. VIII, pp. 144–169. Amer. Math. Soc., Providence, R.I. (1965)

  52. Carlitz, L., Subbarao, M.V.: A simple proof of the quintuple product identity. Proc. Amer. Math. Soc. 32, 42–44 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  53. Cayley, A.: A letter to Dr. Franklin (an extract). Johns Hopkins Univ. Circular 2(22), 86 (1883)

  54. Chapman, R.: Franklin’s argument proves an identity of Zagier. Electron. J. Combin. 7(1), Research Paper 54, 5 pp. (electronic) (2000)

  55. Cheema, M.S.: Vector partitions and combinatorial identities. Math. Comp. 18, 414–420 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  56. Cohen, D.I.A.: PIE-sums: a combinatorial tool for partition theory. J. Combin. Theory Ser. A 31(3), 223–236 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  57. Corteel, S. Particle seas and basic hypergeometric series. Adv. in Appl. Math. 31(1), 199–214 (2003)

  58. Corteel, S., Lovejoy, J.: Frobenius partitions and the combinatorics of Ramanujan’s 1ψ1 summation. J. Combin. Theory Ser. A 97(1), 177–183 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  59. Corteel, S., Lovejoy, J.: Overpartitions. Trans. Amer. Math. Soc. 356(4), 1623–1635 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  60. Dyson, F.J.: Some Guesses in The Theory of Partitions. Eureka (Cambridge) 8, 10–15 (1944)

    Google Scholar 

  61. Dyson, F.J.: A new symmetry of partitions. J. Combin. Theory 7, 56–61 (1969)

    MATH  MathSciNet  Google Scholar 

  62. Dyson, F.J.: A walk through Ramanujan’s garden. In Ramanujan revisited (Urbana-Champaign, Ill., 1987), pp. 7–28. Academic Press, Boston, MA (1988)

  63. Dyson, F.J.: Mappings and symmetries of partitions. J. Combin. Theory Ser. A 51(2), 169–180 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  64. Edwards, H.M.: Fermat’s last theorem. Springer-Verlag, New York (1996)

    MATH  Google Scholar 

  65. Erdös, P.: On an elementary proof of some asymptotic formulas in the theory of partitions. Ann. Math. 43(2), 437–450 (1942)

    Article  MATH  Google Scholar 

  66. Euler, L. Introductio in analysin infinitorum. Tomus primus. Marcum-Michaelem Bousquet, Lausannae (1748)

  67. Ewell, J.A.: Recurrences for the sum of divisors. Proc. Amer. Math. Soc. 64(2), 214–218 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  68. Farkas, H.M., Kra, I.: Theta constants, Riemann surfaces and the modular group, vol. 37 of Graduate Studies in Mathematics. AMS, Providence, RI (2001)

  69. Fine, N.J.: Some new results on partitions. Proc. Nat. Acad. Sci. USA 34, 616–618 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  70. Fine, N.J.: Basic hypergeometric series and applications. AMS, Providence, RI (1988)

  71. Foata, D., Han, G.-N.: The triple, quintuple and septuple product identities revisited. Sém. Lothar. Combin., 42: Art. B42o, 12 pp. (electronic) (1999)

  72. Franklin, F.: Sure le développement du produit infini (1 −x)(1 −x 2)(1 −x 3)... C. R. Acad. Paris Ser A 92:448–450 (1881)

  73. Franklin, F.: On partitions. Johns Hopkins Univ. Circular 2(22), 72 (1883)

  74. Garrett, K., Ismail, M.E.H., Stanton, D.: Variants of the Rogers-Ramanujan identities. Adv. in Appl. Math. 23(3), 274–299 (1999)

    Google Scholar 

  75. Garsia, A.M. Combinatorics Lecture Notes. (November 10, 1999), to appear.

  76. Garsia, A.M., Milne, S.C.: A Rogers-Ramanujan bijection. J. Combin. Theory Ser. A 31(3), 289–339 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  77. Garvan, F.G.: New combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7 and 11. Trans. Amer. Math. Soc. 305(1), 47–77 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  78. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)

  79. Gupta, H.: Combinatorial proof of a theorem on partitions into an even or odd number of parts. J. Combin. Theory Ser. A 21(1), 100–103 (1976)

    Article  MATH  Google Scholar 

  80. Hardy, G.H.: Ramanujan. Twelve lectures suggested by his life and work. Cambridge University Press, Cambridge, England (1940)

    Google Scholar 

  81. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. 17, 75–115 (1918)

    Google Scholar 

  82. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. 5th edn. The Clarendon Press Oxford University Press, New York, (1979)

    MATH  Google Scholar 

  83. Hathaway, A.S.: A proof of a Theorem of Jacobi. Johns Hopkins Univ. Circular 2(25), 143–144 (1883)

    Google Scholar 

  84. Hickerson, D.R.: A partition identity of the Euler type. Amer. Math. Monthly 81, 627–629 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  85. Hirschhorn, M.D.: Simple proofs of identities of MacMahon and Jacobi. Discrete Math. 16(2), 161–162 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  86. Hirschhorn, M.D.: Polynomial identities which imply identities of Euler and Jacobi. Acta Arith. 32(1), 73–78 (1977)

    MATH  MathSciNet  Google Scholar 

  87. Hirschhorn, M.D.: A simple proof of Jacobi’s two-square theorem. Amer. Math. Monthly 92(8), 579–580 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  88. Hirschhorn, M.D.: A simple proof of Jacobi’s four-square theorem. Proc. Amer. Math. Soc. 101(3), 436–438 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  89. Hoare, A.H.M.: An involution of blocks in the partitions of n. Amer. Math. Monthly 93(6), 475–476 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  90. Ismail, M.E.H.: A simple proof of Ramanujan’s 1ψ1 sum. Proc. Amer. Math. Soc. 63(1), 185–186 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  91. Joichi, J.T., Stanton, D.: An involution for Jacobi’s identity. Discrete Math. 73(3), 261–271 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  92. Kanigel, R.: The Man Who Knew Infinity. Scribner, New York (1991)

  93. Kim, D., Yee, A.J.: A note on partitions into distinct parts and odd parts. Ramanujan J. 3(2), 227–231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  94. Kleitman, D.J.: On the future of combinatorics. In: Essays on the future. Birkhäuser, Boston, MA (2000) pp. 123–134

  95. Knuth, D.E., Paterson, M.S.: Identities from partition involutions. Fibonacci Quart. 16(3), 198–212 (1978)

    MATH  MathSciNet  Google Scholar 

  96. Krattenthaler, C.: Another involution principle-free bijective proof of Stanley’s hook-content formula. J. Combin. Theory Ser. A 88(1), 66–92 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  97. Leibenzon, Z.L.: A simple combinatorial method for proof of the Jacobi identity and its generalizations. Funktsional. Anal. i Prilozhen. 20(1), 77–78 (1986)

    MATH  MathSciNet  Google Scholar 

  98. Leibenzon, Z.L.: A simple proof of the Macdonald identities for the series A. Funktsional. Anal. i Prilozhen. 25(3), 19–23 (1991)

    Google Scholar 

  99. Lewis, R.P.: A combinatorial proof of the triple product identity. Amer. Math. Monthly 91(7), 420–423 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  100. Little, D.P.: An extension of Franklin’s bijection. Sém. Lothar. Combin., 42: Art. B42h, 10 pp. (electronic) (1999)

  101. Macdonald, I.G.: Affine root systems and Dedekind’s η-function. Invent. Math. 15, 91–143 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  102. MacMahon, P.A.: Combinatory analysis. Chelsea Publishing Co., New York (1960)

  103. Miller, E., Pak, I. in preparation.

  104. O’Hara, K.M.: Bijections for partition identities. J. Combin. Theory Ser. A 49(1), 13–25 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  105. Pak, I. On Fine’s partition theorems, Dyson, Andrews, and missed opportunities. Math. Intelligencer, to appear.

  106. Pak, I.: Partition identities and geometric bijections. Proc. Amer. Math. Soc. to appear.

  107. Pak, I.: Hook length formula and geometric combinatorics. Sém. Lothar. Combin., 46:Art. B46f, 13 pp. (electronic) (2001)

  108. Pak, I., Postnikov, A.: A generalization of Sylvester’s identity. Discrete Math. 178(1–3), 277–281 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  109. Remmel, J.B.: Bijective proofs of some classical partition identities. J. Combin. Theory Ser. A 33(3), 273–286 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  110. Sagan, B.E.: Bijective proofs of certain vector partition identities. Pacific J. Math. 102(1), 171–178 (1982)

    MATH  MathSciNet  Google Scholar 

  111. Schur, I.: Ein Beitrag zur Additiven Zahlentheorie und zur Theorie der Kettenbrüche. S.-B. Preuss. Akad. Wiss. Phys. Math. Klasse, pp. 302–321 (1917)

  112. Schur, I.: Zur Additiven Zahlentheorie. S.-B. Preuss. Akad. Wiss. Phys. Math. Klasse, pp. 488–495 (1926)

  113. Shanks, D.: A short proof of an identity of Euler. Proc. Amer. Math. Soc. 2, 747–749 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  114. Shiu, P.: Involutions associated with sums of two squares. Publ. Inst. Math. (Beograd) (N.S.), 59(73), 18–30, avaiable at: http://www.emis.de/journals/PIMB/073/index.html. (1996)

  115. Stanley, R.P.: Enumerative combinatorics. Vol. 1, 2. Cambrridge University Press, Cambridge (1997, 1999)

  116. Stanton, D.: An elementary approach to the Macdonald identities. In q–series and partitions (Minneapolis MN, 1988), pp. 139–149. Springer, New York (1989)

  117. Stockhofe, D.: Bijektive Abbildungen auf der Menge der Partitionen einer natürlichen Zahl. Bayreuth. Math. Schr. (10), 1–59 (1982)

  118. Stoyanovskii, A.V., Feigin, B.L.: Functional models of the representations of current algebras, and semi-infinite Schubert cells. Funktsional. Anal. i Prilozhen. 28(1), 68–90 (1994)

    MATH  MathSciNet  Google Scholar 

  119. Subbarao, M.V.: Combinatorial proofs of some identities. In Proceedings of the Washington State University Conference on Number Theory (Washington State Univ., Pullman, Wash., 1971), pp. 80–91. Dept. Math., Washington State Univ., Pullman, Wash (1971)

  120. Sudler, C.: Jr. Two enumerative proofs of an identity of Jacobi. Proc. Edinburgh Math. Soc. 15(2), 67–71 (1966)

    MATH  MathSciNet  Google Scholar 

  121. Sylvester, J.J., Franklin, F.: A constructive theory of partitions, arranged in three acts, an interact and an exodion. Amer. J. Math. 5, 251–330 (1882)

    Article  MathSciNet  Google Scholar 

  122. Uchimura, K.: An identity for the divisor generating function arising from sorting theory. J. Combin. Theory Ser. A 31(2), 131–135 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  123. Vahlen, K.T.: Beiträge zu einer additiven Zahlentheorie. J. Reine Angew. Math. 112, 1–36 (1893)

    MATH  Google Scholar 

  124. Vershik, A.M.: A bijective proof of the Jacobi identity, and reshapings of the Young diagrams. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 155 (Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII), 3–6 (1986)

  125. Wenkov, B.A.: Elementary Number Theory, in Russian, ONTI, Moscow, USSR (1937)

  126. Wilf, H.S. Lectures on Integer Partitions. (unpublished), avaiable at: http://www.cis.upenn.edu/∼wilf

  127. Wilf, H.S.: Identically distributed pairs of partition statistics. Sém. Lothar. Combin., 44:Art B44c, 3 pp. (electronic) (2000)

  128. Wright, E.M.: An enumerative proof of an identity of Jacobi. J. London Math. Soc. 40, 55–57 (1965)

    MATH  MathSciNet  Google Scholar 

  129. Zagier, D.: A one-sentence proof that every prime p ≡ 1 (mod 4) is a sum of two squares. Amer. Math. Monthly 97(2), 144 (1990)

    Google Scholar 

  130. Zeng, J. The q-variations of Sylvester’s bijection between odd and strict partitions. Ramanujan J. 9(3), 289–303 (2005)

    Google Scholar 

  131. Zolnowsky, J.: A direct combinatorial proof of the Jacobi identity. Discrete Math. 9, 293–298 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Pak.

Additional information

2000 Mathematics Subject Classification Primary—05A17; Secondary—05A30; 11P83

The author was partially supported by NSA and NSF grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pak, I. Partition bijections, a survey. Ramanujan J 12, 5–75 (2006). https://doi.org/10.1007/s11139-006-9576-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-006-9576-1

Keywords

Navigation