Abstract
We calculate the hybrid entanglement entropy between coin and walker degrees of freedom in a class of two-step non-unitary quantum walks. The model possesses a joint parity and time-reversal symmetry or PT-symmetry and supports topological phases when this symmetry is unbroken by its eigenstates. An asymptotic analysis at long times reveals that the quantum walk can indefinitely sustain hybrid entanglement in the unbroken symmetry phase even when gain and loss mechanisms are present. However, when the gain-loss strength is too large, the PT-symmetry of the model is spontaneously broken and entanglement vanishes. The entanglement entropy is therefore an effective and robust parameter for constructing PT-symmetry and topological phase diagrams in this non-unitary dynamical system.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nayak, A., Vishwanath, A.: Quantum walk on the line. arXiv:quant-ph/0010117 (2000)
Yang, Y.-G., Pan, Q.-X., Sun, S.-J., Xu, P.: Novel image encryption based on quantum walks. Sci. Rep. 5, 7784 (2015). https://doi.org/10.1038/srep07784
Abd El-Latif, A.A., Abd-El-Atty, B., Amin, M., Iliyasu, A.M.: Quantum-inspired cascaded discrete-time quantum walks with induced chaotic dynamics and cryptographic applications. Sci. Rep. 10, 1930 (2020). https://doi.org/10.1038/s41598-020-58636-w
Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 200–209. IEEE Computer Society, Los Alamitos, CA (2003). https://doi.org/10.1109/SFCS.2003.1238194
Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inform. 1(4), 507–518 (2003). https://doi.org/10.1142/S0219749903000383
Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–1108. SIAM, Philadelphia, PA (2005). e-print https://doi.org/10.48550/arXiv.quant-ph/0402107
Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009). https://doi.org/10.1103/PhysRevLett.102.180501
Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010). https://doi.org/10.1103/PhysRevA.81.042330
Kurzyński, P., Wójcik, A.: Discrete-time quantum walk approach to state transfer. Phys. Rev. A 83(6), 062315 (2011). https://doi.org/10.1103/PhysRevA.83.062315
Shang, Y., Wang, Y., Li, M., Lu, R.: Quantum communication protocols by quantum walks with two coins. Europhys. Lett. 124(6), 60009 (2018). https://doi.org/10.1209/0295-5075/124/60009
Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 170506 (2008). https://doi.org/10.1103/PhysRevLett.100.170506
Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010). https://doi.org/10.1103/PhysRevLett.104.050502
Karski, M., Förster, L., Choi, J.-M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009). https://doi.org/10.1126/science.1174436
Preiss, P.M., Ma, R., Eric Tai, M., Lukin, A., Rispoli, M., Zupancic, P., Lahini, Y., Islam, R., Greiner, M.: Strongly correlated quantum walks in optical lattices. Science 347(6227), 1229–1233 (2015). https://doi.org/10.1126/science.1260364
Manouchehri, K., Wang, J.: Physical implementation of quantum walks, 1st edn. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-36014-5
De Nicola, F., Sansoni, L., Crespi, A., Ramponi, R., Osellame, R., Giovannetti, V., Fazio, R., Mataloni, P., Sciarrino, F.: Quantum simulation of bosonic-fermionic noninteracting particles in disordered systems via a quantum walk. Phys. Rev. A 89(3), 032322 (2014). https://doi.org/10.1103/PhysRevA.89.032322
Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488(7410), 167–171 (2012). https://doi.org/10.1038/nature11298
Xiao, L., Zhan, X., Bian, Z., Wang, K., Zhang, X., Wang, X., Li, J., Mochizuki, K., Kim, D., Kawakami, N., Yi, W., Obuse, H., Sanders, B.C., Xue, P.: Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13(11), 1117–1123 (2017). https://doi.org/10.1038/nphys4204
Zhan, X., Xiao, L., Bian, Z., Wang, K., Qiu, X., Sanders, B.C., Yi, W., Xue, P.: Detecting topological invariants in nonunitary discrete-time quantum walks. Phys. Rev. Lett. 119(13), 130501 (2017). https://doi.org/10.1103/PhysRevLett.119.130501
Özdemir, ŞK., Rotter, S., Nori, F., Yang, L.: Parity-time symmetry and exceptional points in photonics. Nat. Mater. 18(8), 783–798 (2019). https://doi.org/10.1038/s41563-019-0304-9
Hatano, N., Obuse, H.: Delocalization of a non-Hermitian quantum walk on random media in one dimension. Ann. Phys. 435, 168615 (2021). https://doi.org/10.1016/j.aop.2021.168615
Lin, Q., Li, T., Xiao, L., Wang, K., Yi, W., Xue, P.: Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun. 13(1), 3229 (2022). https://doi.org/10.1038/s41467-022-30938-9
Carneiro, I., Loo, M., Xu, X., Girerd, M., Kendon, V., Knight, P.L.: Entanglement in coined quantum walks on regular graphs. New J. Phys. 7(1), 156 (2005). https://doi.org/10.1088/1367-2630/7/1/156
Abal, G., Siri, R., Romanelli, A., Donangelo, R.: Quantum walk on the line: Entanglement and nonlocal initial conditions. Phys. Rev. A 73(4), 042302 (2006). https://doi.org/10.1103/PhysRevA.73.042302
Ide, Y., Konno, N., Machida, T.: Entanglement for discrete-time quantum walks on the line. Quantum Inf. Comput. 11(9–10), 855–866 (2011). https://doi.org/10.48550/arXiv.1012.4164
Neves, L., Lima, G., Delgado, A., Saavedra, C.: Hybrid photonic entanglement: realization, characterization, and applications. Phys. Rev. A 80(4), 042322 (2009). https://doi.org/10.1103/PhysRevA.80.042322
Li, Y., Gessner, M., Li, W., Smerzi, A.: Hyper- and hybrid nonlocality. Phys. Rev. Lett. 120, 050404 (2018). https://doi.org/10.1103/PhysRevLett.120.050404
Flamini, F., Spagnolo, N., Sciarrino, F.: Photonic quantum information processing: a review. Rep. Prog. Phys. 82(1), 016001 (2019). https://doi.org/10.1088/1361-6633/aad5b2
Gratsea, A., Metz, F., Busch, T.: Universal and optimal coin sequences for high entanglement generation in 1D discrete time quantum walks. J. Phys. A: Math. Theor. 53(44), 445306 (2020). https://doi.org/10.1088/1751-8121/abb54d
Gratsea, A., Lewenstein, M., Dauphin, A.: Generation of hybrid maximally entangled states in a one-dimensional quantum walk. Quantum Sci. Technol. 5(2), 025002 (2020). https://doi.org/10.1088/2058-9565/ab6ce6
Vieira, R., Amorim, E.P.M., Rigolin, G.: Dynamically disordered quantum walk as a maximal entanglement generator. Phys. Rev. Lett. 111(18), 180503 (2013). https://doi.org/10.1103/PhysRevLett.111.180503
Maloyer, O., Kendon, V.: Decoherence versus entanglement in coined quantum walks. New J. Phys. 9(4), 87 (2007). https://doi.org/10.1088/1367-2630/9/4/087
Dey, S., Raj, A., Goyal, S.K.: Controlling decoherence via PT-symmetric non-Hermitian open quantum systems. Phys. Lett. A 383(30), 125931 (2019). https://doi.org/10.1016/j.physleta.2019.125931
Fring, A., Frith, T.: Eternal life of entropy in non-Hermitian quantum systems. Phys. Rev. A 100(1), 010102 (2019). https://doi.org/10.1103/PhysRevA.100.010102
Chakraborty, S., Sarma, A.K.: Delayed sudden death of entanglement at exceptional points. Phys. Rev. A 100(6), 063846 (2019). https://doi.org/10.1103/PhysRevA.100.063846
Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \({\cal{P} }{\cal{T} }\) symmetry. Phys. Rev. Lett. 80(24), 5243–5246 (1998). https://doi.org/10.1103/PhysRevLett.80.5243
Bender, C.M., Boettcher, S., Meisinger, P.N.: \({\cal{P} }{\cal{T} }\)-symmetric quantum mechanics. J. Math. Phys. 40(5), 2201–2229 (1999). https://doi.org/10.1063/1.532860
Mochizuki, K., Kim, D., Obuse, H.: Explicit definition of \(\mathscr{P}\mathscr{T}\) symmetry for nonunitary quantum walks with gain and loss. Phys. Rev. A 93(6), 062116 (2016). https://doi.org/10.1103/PhysRevA.93.062116
Lambert, N., Emary, C., Brandes, T.: Entanglement and entropy in a spin-boson quantum phase transition. Phys. Rev. A 71(5), 053804 (2005). https://doi.org/10.1103/PhysRevA.71.053804
De Chiara, G., Lepori, L., Lewenstein, M., Sanpera, A.: Entanglement spectrum, critical exponents, and order parameters in quantum spin chains. Phys. Rev. Lett. 109(23), 237208 (2012). https://doi.org/10.1103/PhysRevLett.109.237208
Wang, Q.-Q., Xu, X.-Y., Pan, W.-W., Tao, S.-J., Chen, Z., Zhan, Y.-T., Sun, K., Xu, J.-S., Chen, G., Han, Y.-J., Li, C.-F., Guo, G.-C.: Robustness of entanglement as an indicator of topological phases in quantum walks. Optica 7(1), 53–58 (2020). https://doi.org/10.1364/OPTICA.375388
Mochizuki, K., Kim, D., Kawakami, N., Obuse, H.: Bulk-edge correspondence in nonunitary Floquet systems with chiral symmetry. Phys. Rev. A 102(6), 062202 (2020). https://doi.org/10.1103/PhysRevA.102.062202
Wang, Q., Li, Z.-J.: Topological invariants of nonunitary quantum walk with chiral symmetry. Results Phys. 34, 105279 (2022). https://doi.org/10.1016/j.rinp.2022.105279
Asbóth, J.K., Obuse, H.: Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 88(12), 121406 (2013). https://doi.org/10.1103/PhysRevB.88.121406
Mostafazadeh, A.: Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. Phys. Rev. Lett. 102(22), 220402 (2009). https://doi.org/10.1103/PhysRevLett.102.220402
Sergi, A., Zloshchastiev, K.G.: Quantum entropy of systems described by non-Hermitian Hamiltonians. J. Stat. Mech. Theor. Exp. 2016(3), 033102 (2016). https://doi.org/10.1088/1742-5468/2016/03/033102
Wen, J., Zheng, C., Ye, Z., Xin, T., Long, G.: Stable states with nonzero entropy under broken \(\cal{PT} \) symmetry. Phys. Rev. Research 3(1), 013256 (2021). https://doi.org/10.1103/PhysRevResearch.3.013256
Herviou, L., Regnault, N., Bardarson, J.H.: Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models. SciPost Phys. 7, 069 (2019). https://doi.org/10.21468/SciPostPhys.7.5.069
Xiao, L., Deng, T., Wang, K., Zhu, G., Wang, Z., Yi, W., Xue, P.: Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nature Phys. 16(7), 761–766 (2020). https://doi.org/10.1038/s41567-020-0836-6
Ju, C.-Y., Miranowicz, A., Chen, G.-Y., Nori, F.: Non-Hermitian Hamiltonians and no-go theorems in quantum information. Phys. Rev. A 100(6), 062118 (2019). https://doi.org/10.1103/PhysRevA.100.062118
Badhani, H., Banerjee, S., Chandrashekar, C.: Non-Hermitian quantum walks and non-Markovianity: the coin-position interaction. arXiv:2109.10682 (2021)
Pechukas, P.: Reduced dynamics need not be completely positive. Phys. Rev. Lett. 73(8), 1060–1062 (1994). https://doi.org/10.1103/PhysRevLett.73.1060
Chen, L.-M., Chen, S.A., Ye, P.: Entanglement, non-Hermiticity, and duality. SciPost Phys. 11, 003 (2021). https://doi.org/10.21468/SciPostPhys.11.1.003
Hatsugai, Y.: Quantized Berry phases as a local order parameter of a quantum liquid. J. Phys. Soc. Jpn. 75(12), 123601 (2006). https://doi.org/10.1143/JPSJ.75.123601
Liang, S.-D., Huang, G.-Y.: Topological invariance and global Berry phase in non-Hermitian systems. Phys. Rev. A 87(1), 012118 (2013). https://doi.org/10.1103/PhysRevA.87.012118
Zak, J.: Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989). https://doi.org/10.1103/PhysRevLett.62.2747
Cardano, F., D’Errico, A., Dauphin, A., Maffei, M., Piccirillo, B., de Lisio, C., De Filippis, G., Cataudella, V., Santamato, E., Marrucci, L., Lewenstein, M., Massignan, P.: Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8(1), 15516 (2017). https://doi.org/10.1038/ncomms15516
Shen, H., Zhen, B., Fu, L.: Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120(14), 146402 (2018). https://doi.org/10.1103/PhysRevLett.120.146402
Zhang, X.Z., Song, Z.: Partial topological Zak phase and dynamical confinement in a non-Hermitian bipartite system. Phys. Rev. A 99, 012113 (2019). https://doi.org/10.1103/PhysRevA.99.012113
Brody, D.C.: Biorthogonal quantum mechanics. J. Phys. A Math. Theor. 47(3), 035305 (2013). https://doi.org/10.1088/1751-8113/47/3/035305
Song, H.F., Rachel, S., Flindt, C., Klich, I., Laflorencie, N., Le Hur, K.: Bipartite fluctuations as a probe of many-body entanglement. Phys. Rev. B 85(3), 035409 (2012). https://doi.org/10.1103/PhysRevB.85.035409
Acharya, A.P., Chakrabarty, A., Sahu, D.K., Datta, S.: Localization, \(\cal{PT} \) symmetry breaking, and topological transitions in non-Hermitian quasicrystals. Phys. Rev. B 105(1), 014202 (2022). https://doi.org/10.1103/PhysRevB.105.014202
Ashida, Y., Furukawa, S., Ueda, M.: Parity-time-symmetric quantum critical phenomena. Nat. Commun. 8, 15791 (2017). https://doi.org/10.1038/ncomms15791
Kawabata, K., Bessho, T., Sato, M.: Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett. 123(6), 066405 (2019). https://doi.org/10.1103/PhysRevLett.123.066405
Hanai, R., Littlewood, P.B.: Critical fluctuations at a many-body exceptional point. Phys. Rev. Research 2(3), 033018 (2020). https://doi.org/10.1103/PhysRevResearch.2.033018
Acknowledgements
G. M. M. Itable acknowledges support from the Department of Science and Technology–Science Education Institute through its Accelerated Science and Technology Human Resource Development Program. The authors are grateful for the guidance, mentorship, and valuable advice provided by J. P. H. Esguerra.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Note added in proof
In the thermodynamic limit of a non-Hermitian Su-Schrieffer-Heeger model, the exceptional point is characterized by a non-analyticity in the sublattice entanglement entropy where a transition in volume-law scaling occurs [Le Gal, Y., Turkeshi, X., Schiró, M.: arXiv:2210.11937 (2022)].
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Itable, G.M.M., Paraan, F.N.C. Entanglement entropy distinguishes PT-symmetry and topological phases in a class of non-unitary quantum walks. Quantum Inf Process 22, 106 (2023). https://doi.org/10.1007/s11128-023-03848-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-03848-y